Cho tam giác ABC , đường phân giác trong của C cắt AB tại D. Chứng minh rằng CD^2 <CA.CB
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 6.Cho tam giác ABC , đường phân giác trong của C cắt cạnh AB tại D. Chứng minh rằng CD2 < CA.CB
Cho tam giác ABC, đường phân giác trong của C cắt cạnh AB tại D. Chứng minh rằng \(CD^2< CA.CB\)
Học đến tính chât tia phân giác chia thành tỷ lệ chưa
\(\Delta ABC\)có: đường phân giác trong của C cắc cạnh AB tại D. Lấy điểm E trên tia CD sao cho \(\widehat{CBD}=\widehat{CEA}\)
Xét \(\Delta CBD\)và \(\Delta CEA\)có:
\(\widehat{BCD}=\widehat{ACD}\)( đường phân giác trong của C cắc cạnh AB tại D )
\(\widehat{CBD}=\widehat{CEA}\)
\(\Rightarrow\Delta CBD\)đồng dạng với \(\Delta CEA\left(g.g\right)\)
\(\Rightarrow\frac{CD}{CA}=\frac{BC}{EC}\Leftrightarrow BC.AC=EC.CD\)
Mà \(EC=CD+DE\)
nên \(BC.AC=CD\left(CD+DE\right)\)
\(\Leftrightarrow BC.AC=CD^2+CD.DE\)
\(\Rightarrow CD^2< CA.CB\)
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
TL
a)Xét tam giác ACD và tam giác ECD(đều là vuông)
ECD=DCA(Vì CD là p/giác)
CD là cạnh chung
⇒⇒tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
⇒⇒AD=DE(cạnh cặp tương ứng)
⇒⇒D cách đều hai mút của AE
⇒⇒CD là đường trung trực của AE
Do đó CI⊥⊥AE
⇒⇒Tam giác CIE là tam giác vuông
c)Vì AD=DE(câu b)
Mà tam giác BDE là tam giác vuông(tại E)
⇒⇒DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)
⇒⇒AD<BD(đpcm)
d)Kéo dài BK cắt AC tại O
Vì BK⊥⊥CD(gt)
⇒⇒CK là đường cao thứ nhất của tam giác OBC(1)
Vì tam giác ABC vuông tại A
Nên BA⊥⊥AC
⇒⇒BA là đường cao thứ hai của tam giác OBC(2)
Theo đề bài ta có DE⊥⊥BC
Nên DE là đường cao thứ ba của tam giác OBC(3)
Từ (1),(2) và (3) suy ra:
Ba đường cao giao nhau tại một điểm trùng với điểm D
⇒⇒ 3 đường thẳng AC;DE;BK đồng quy(đpcm)
Học tốt nha ^^
im sorry im class 4
Cho tam giác ABC vuông tại A và có đường cao AH.
a/ Chứng minh AHC đồng dạng với BAC và suy ra AH.BC=AB. AC
b/ Gọi CD là đường phân giác của góc ACB (D thuộc cạnh AB). CD cắt AH tại E. Chứng minh rằng: tam giác ACE đồng dạng với tam giác BCD.
c/ Gọi I là trung điểm của đoạn thẳng DE. Chứng minh rằng: AI vuông góc DE
Cho tam giác ABC, đường phân giác trong của góc C cắt cạnh AB tại D. Chứng minh \(CD^2< CA\cdot CB\)
: Cho tam giác ABC vuông tại A có AB = 9 cm; AC = 12 cm, đường cao AH.
a) Chứng minh: △ ABC đồng dạng △HAC
b) Kẻ tia phân giác CD của góc C ( D thuộc AB) cắt AH tại E. Tính DA/DB ?
c) Chứng minh rằng: AH2 = AH.HB
a)Xét \(\Delta ABC\) và \(\Delta HAC\) có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}\)
=> \(\Delta ABC\) \(\sim\)\(\Delta HAC\) (g-g)
b) Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(BC^2=81+144\)
\(BC^2=225\)
BC=15 cm
Xét \(\Delta ABC\) có : CD là tia phân giác
=> \(\dfrac{AD}{DB}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
c) Đề bài sai nhé vì nếu \(AH^2=AH.HB\)
\(\Leftrightarrow HB=HA\Rightarrow\Delta AHB\) vuông cân tại H
=> \(\widehat{ABH}=45^o\) => \(\Delta ABC\) vuông cân tại A => AB =AC => 9=12(vô lý)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Chứng minh tam giác HBA ~ tam giác ABC
b) Tính BC? ,AH?
c) Tia phân giác của góc C cắt AH tại E, AB tại D. Tia phân giác góc BAH cắt CD tại F, BH tại K. Chứng minh DK // AH rồi chứng minh tam giác AFE ~ tam giác CHE.
Các bạn giải câu d nhé:
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Tia phân giác góc HAC cắt BC tại E. Vẽ EK vuông góc với AC tại K.
a) Chứng minh rằng: tam giác AHE = tam giác AKE và AH=AK
b) KH cắt AE tại I. Chứng minh rằng: AE vuông góc HK từ đó so sánh KE và HI.
c) AH cắt KE tại D. Chứng minh AE vuông góc CD.
d) Tia phân giác góc ABC cắt AE tại M. Chứng minh rằng BM//CD.
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
Cho Tam Giác ABC, có BAC =120 đọ. đường phân giác trong của góc A cắt BC tại D.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC.a)Chứng MInh tam giác ADE = ADF. b)Chứng minh rằng tam giác DEF là tam giác đều C) qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng minh rằng tam giác ACM là tam giác đèu