PTĐTTNT:
a. (xy+1)^2-(x+y)^2
b.64x^4+y^4
1. PTĐTTNT:
a, 4x2 - 4x - 3
b, x3 - x2 - 4
c, 64x4 + y4
Cảm ơn mọi người nhiều nhé!
a, 4x2 - 4x - 3
=4x2-2x+6x-3
=2x(2x-1)+3(2x-1)
=(2x+3)(2x-1)
b, x3 - x2 - 4
= x3-x2+0x-4
= x3-2x2+x2-2x+2x-4
= (x3-2x2)+(x2-2x)+(2x-4)
= x2(x-2)+x(x-2)+2(x-2)
=(x-2)(x2+x+2)
c, 64x4+y4
=64x4+16x2y2+y4-16x2y2
= (8x2+y2)2-16x2y2
= (8x2+y2-4xy)(8x2+y2+4xy)
PTĐTTNT
64x^4+y^4
\(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
PTĐTTNT:
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)
=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)
=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]
=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)
=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)
=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy
=x2
PTĐTTNT
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+xz\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
\(x;y;z\rightarrow q;h;p\)
\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)
\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)
\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)
shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)
\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
Ta có:\(2a-b^2-2bc^2+c^4\)
\(=2a-2b^2+b^2-2bc^2+c^4\)
\(=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Lại có:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right);b-c^2=-2\left(xy+yz+zx\right)\)( Nhác quá hơi tắt xíu )
Thay vào ta được:
\(2\left(a-b^2\right)+\left(b-c^2\right)^2\)
\(=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\right)\)
\(=4xyz\left(x+y+z\right)\)
1.PTĐTTNT
a, x^2-2xy-25-y^2
b, x( x-1)+y (1-x)
c, 7x+7y-(x-y)
d, x^4+y^4
2, Chứng minh rằng:
a, x^2-5x+3≥0
b, -x^2+3x-4<0 với mọi x
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...
Bạn xem lại 1 sô câu sai và bài 2 hộ mk
BÀi 1: Phân tích đa thức thành nhân tử
a)x3+8x2+17x+10
b)abc+ab+bc+ca+a+b+c+1
c)4x4+81
d)64x4+y4
e)x5+x4+1
f)x+2y-xy-2
g)a2+b2-x2-y2+2ab-2xy
\(a^2+2ab+b^2-x^2-2xy-y^2=\left(a+b\right)^2-\left(x+y\right)^2=\left(a+b+x+y\right)\left(a+b-x-y\right)\)\(x+2y-xy-2=x-xy+2y-2=x\left(1-y\right)-2\left(1-y\right)=\left(x-2\right)\left(1-y\right)\)
\(x^5+x^4+1=x^5-x^2+x^4-x+\left(x^2+x+1\right)=x^2\left(x^3-1\right)+x\left(x^3-1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x^2+x+1\right)+x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x+1\right)\)\(64x^4+y^4=64x^4+16x^2y^2+y^4-16x^2y^2=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
\(x^3+8x^2+17x+10=\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(5x+10\right)=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)=\left(x^2+6x+5\right)\left(x+2\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\) \(4x^4+81=4x^4+36x^2+81-36x^2=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)\(abc+ab+bc+ca+a+b+c+1=\left(abc+ab\right)+\left(bc+b\right)+\left(ca+a\right)+\left(c+1\right)=ab\left(c+1\right)+b\left(c+1\right)+a\left(c+1\right)+\left(c+1\right)=\left(c+1\right)\left(ab+a+b+1\right)=\left(c+1\right)\left(a+1\right)\left(b+1\right)\)
a) x3 + x2 + 7x2 + 10x + 7x + 10
= x2(x+1) + 7x(x+1) + 10(x+1)
= (x+1)(x2 + 7x + 10)
b) abc + ab + bc + ca + a + b + c + 1
=(abc + bc) + (ab + a) + (ca + c) + (a + 1)
= bc(a + 1) + a(b+1) + c(a + 1) + 1(a+1)
= (a + 1)(bc + a + c + 1)
c) 4x4 + 81
= 4x4 + 36x2 + 81 - 36x2
= (2x2)2 + 2.2x2.9 + 92 - (6x)2
= (2x2 + 9)2 - (6x)2 (áp dụng hằng đẳng thức đáng nhớ số 1)
= (2x2 + 9 - 6x)(2x2 + 9 + 6x) (áp dụng hằng đẳng thức đáng nhớ số 3)
d) 64x4 + y4
= 64x4 + 16x2y2 + y4 - 16x2y2
= (8x2)2 + 2.8x2.y2 + (y2)2 - (4xy)2
= (8x2 + y2)2 - (4xy)2 (áp dụng hằng đẳng thức đáng nhớ sô 1)
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy) (áp dụng hằng đẳng thức đáng nhớ số 3)
e) x5 + x4 + 1
= x5 - x2 + (x4 + x2 + 1)
= x2(x3 - 1) + (x4 + x2 + 1)
= x2(x-1)(x2 + x + 1) + (x4 + 2x2 + 1 - x2) (áp dụng hằng đẳng thức số 7)
= (x3 - 1)(x2 + x + 1) + [(x2)2 + 2.x2.1 + 12 - x2 ]
= (x3 - 1)(x2 + x + 1) + [(x2 + 1)2 - x2 ] (áp dụng hằng đẳng thức số 1)
= (x3 - 1)(x2 + x + 1) + (x2 + 1 - x2)(x2 + 1 + x2) ( áp dụng hằng đẳng thức số 3)
= (x2 + x + 1)(x3 - 1 + x2 - x + 1)
= (x2 + x + 1)(x3 + x2 - x)
Đơi làm nốt, đang oải lắm!
Phân tích đa thức thành nhân tử a) 64x^2 -24y^2 b)64x^3-27y^3 c)x^4- 2x^3+x^2 d) (x-y) 3+8y^3
Lời giải:
a.
$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$
b.
$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$
c.
$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$
d.
$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$
$=(x+y)(x^2-4xy+7y^2)$
a) \(64x^2-24y^2\)
\(=8\left(8x^2-3y^2\right)\)
b) \(64x^3-27y^3\)
\(=\left(4x\right)^3-\left(3y\right)^3\)
\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c) \(x^4-2x^3+x^2\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
d) \(\left(x-y\right)^3+8y^3\)
\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)
\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)
PTĐTTNT
\(a,x^4-4x^2+4x-1\)
\(b,4x^2-y^2+4x+1\)
a) x4 - 4x2 + 4x - 1
= ( x2)2 - [ ( 2x)2 - 2.2x + 1]
= ( x2)2 - ( 2x - 1)2
= ( x2 - 2x +1)( x2 + 2x - 1)
= ( x -1)2( x2 + 2x - 1)
b) 4x2 - y2 + 4x + 1
= (2x)2 + 2.2x +1 - y2
= ( 2x +1)2 - y2
= ( 2x + 1 - y)( 2x + 1 + y)
\(\text{a) }x^4-4x^2+4x-1\\ \\=x^4-\left(4x^2-4x+1\right)\\ \\ =\left(x^2\right)^2-\left(2x-1\right)^2\\ \\=\left(x^2-2x+1\right)\left(x^2+2x-1\right)\\ \\=\left(x-1\right)^2\left(x^2+2x-1\right)\)
\(\text{b) }4x^2-y^2+4x+1\\ \\=\left(4x^2+4x+1\right)-y^2\\ \\=\left(2x+1\right)^2-y^2\\ \\=\left(2x+1+y\right)\left(2x+1-y\right)\)
tach da thức sau thành nhân tử:
64x^4+y^4=?
6x^2-xy-y^2=?
đố ai giải dc