Cho phương trình ẩn x (2m-1)x-25+m=0
a. Tìm giá trị của m để pt là pt bậc nhất
b. Giải phương trình m=-1
cho pt :2(m-2)x+3=3m-13 (1) a)tìm m để pt (1) là phương trình bậc nhất một ẩn. b)với giá trị nào của m thì phương trình (1) tương đương với phương trình: 3x+7=2(x-1)=8 (2)
a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 3x+7=2(x-1)+8
=>3x+7=2x-2+8
=>3x+7=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
-2(m-2)+3=3m-13
=>-2m+4+3=3m-13
=>-2m+7=3m-13
=>-5m=-20
hay m=4(nhận)
Cho phương trình ( m – 2 ) x + 3 = 0 ( m là hằng số)
a)Với giá trị nào của m thì pt trên là pt bậc nhất một ẩn?
b)Giải phương trình khi m = 5
a) PT trên là PT bậc nhất \(\Leftrightarrow m-2 \ne 0 \Leftrightarrow m \ne 2\)
b) \(m=5 \Rightarrow 3x+3=0 \Leftrightarrow x=-1\)
Vậy \(x=-1\) khi \(m=5\).
a/ Với \(m\ne2\) thì pt đã cho là pt bậc nhất một ẩn
b/ Thay m = 5 vàopt đã chota được :
\(3x+3=0\)
\(\Leftrightarrow3\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) Để phương trình trên là phương trình bậc nhất 1 ẩn thì \(m-2\ne0\Leftrightarrow m\ne2\)
b) Thay \(m=5\) vào phương trình trên, ta được
\(\left(5-2\right)x+3=0\\ \Leftrightarrow3x+3=0\\ \Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\)
Vậy \(x=-1\)
Bài 1: Cho phương ẩn x: (1-2m) x – m-4=0 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất.
b) Tìm giá trị của m để phương trình có nghiệm x=2
c) Giải phương trình khi m= 5
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Cho phương trình ( Ẩn x ) :(2m-1)x-25+m =0
a) Tìm các giá trị của m để pt là pt bậc nhất
b) Giải phương trình m=-1
a: Để đây là phương trình bậc nhất thì 2m-1<>0
hay m<>1/2
b: Khi m=-1 thì pt sẽ là \(\left(-2-1\right)x-25+\left(-1\right)=0\)
=>-3x-26=0
hay x=-26/3
cho PT (3m-2)*x+5=m.a)Với giá trị của m thì PT đã cho là phương trình bậc nhất 1 ẩn?b)Tìm m sao cho phương trình nhận x=-2 làm nghiệm
Cho phương trình (ẩn x):(2m-1) x-25+m =0
a. Tìm gt m để pt là pt bậc nhất
b. Giải pt m=-1
pt ẩn x : \(\left(2m-1\right)x-25+m=0\)
a) Để pt là pt bậc nhất khi \(2m-1\ne0\Rightarrow m\ne\dfrac{1}{2}\)
Vậy \(m\ne\dfrac{1}{2}\) thì pt là pt bậc nhất.
b) Khi m = -1 ta có : \(\left(2\cdot\left(-1\right)-1\right)\cdot x-25+\left(-1\right)=0\)
\(\Leftrightarrow-3x-26=0\)
\(\Rightarrow x=-\dfrac{26}{3}\)
Vậy khi m = -1 thì x = \(-\dfrac{26}{3}\).
cho phương trình ẩn x: \(x^2=2mx+2m+8\)(1)
a. giải pt đã cho khi m=4
b. Chứng minh PT luôn có 1 nghiệm phân biệt vs mọi m
c. tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x1+ 2x2=2
Cho phương trình ẩn x: (m2-m+1)x+2m-3=0 .có bao nhiêu giá trị của m để phương trình là phương trình bậc nhất một ẩn?
Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:
$m^2-m+1\neq 0$
$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$
Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.