\(\left(4x-1\right)^2-x.\left(3-x\right)=121\)
\(5x^2-x=18\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
Tìm x biết : (đề không sai)
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x-7\right)\)= \(\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)-\left(8x-3\right)\) \(\left(-x^2+2\right)=-5x^2\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\) \(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm x biết :(đề không sai )
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)\) \(=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)\) \(-\left(8x-3\right)\left(-x^2+2\right)\) \(-5x\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\)\(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
\(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(< =>-4x^2+28x+4x^3-20x=28x^2-13\)
\(< =>4x^3-\left(4x^2+28x^2\right)+8x+13=0\)
\(< =>4x^3-32x^2+8x+13=0\)
do cái này nghiệm màu mè nên mình sẽ làm cách khá khó hiểu
\(< =>x^3-7x^2+2x+\frac{13}{4}=0\)
Đặt \(x=y+\frac{7}{3}\)khi đó phương trình trở thành
\(\left(y+\frac{7}{3}\right)^3-7\left(y+\frac{7}{3}\right)^2+2\left(y+\frac{7}{3}\right)+\frac{13}{4}=0\)
\(< =>y^3+3y^2\frac{7}{3}+3y\frac{49}{9}-7\left(y^2+\frac{14y}{3}+\frac{49}{9}\right)+2y+\frac{14}{3}+\frac{13}{4}=0\)
\(< =>y^3+7y^2+\frac{49y}{3}-7y^2-\frac{98y}{3}-\frac{343}{9}+2y+\frac{95}{12}=0\)
\(< =>y^3-\frac{43y}{3}-\frac{1087}{36}=0\)
Đặt \(y=u+v\)sao cho \(uv=\frac{43}{9}\)khi đó pt trở thành
\(\left(u+v\right)^3-\frac{43\left(u+v\right)}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+3uv\left(u+v\right)-\left(u+v\right).\frac{43}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+\left(u+v\right)\left(3uv-\frac{43}{3}\right)-\frac{1087}{36}=0\)
\(< =>u^3+v^3=\frac{1087}{36}\)(*) (do \(uv=\frac{43}{9}\Leftrightarrow3uv-\frac{43}{3}=0\))
Ta có \(uv=\frac{43}{9}\Leftrightarrow u^3v^3=\frac{79507}{729}\)(**)
Từ (*) và (*) Suy ra được \(\hept{\begin{cases}u^3+v^3=\frac{1087}{36}\\u^3v^3=\frac{79507}{729}\end{cases}}\)
đến đây dễ rồi nhé ^^
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
Tìm x biết
a, \(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
b,\(\left(4x-1\right)^2-\left(2x+3\right)^2+5\left(x+2\right)^2+3\left(x-2\right)\left(x+2\right)=500\)
\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
\(25x^2-10x+1-25x^2+16=7\)
\(17-10x=7\)
\(10x=10\)
\(x=1\)
Giải phương trình :
a)\(x.\left(x+1\right).\left(x+2\right).\left(x+3\right)=24\)
b)\(2x^4-20x^2+18=0\)
c)\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=0\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x+1=t\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-24=0\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
TH1:t=5\(\Rightarrow x^2+3x+1=5\)
\(\Leftrightarrow x^2+3x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
TH2:t=-5\(\Rightarrow x^2+3x+1=-5\)
\(\Leftrightarrow x^2+3x+6=0\)(vô nghiệm)
Vậy ...
b)\(\Leftrightarrow2\left(x^4-10x^2+9\right)=0\)
\(\Leftrightarrow x^4-9x^2-x^2+9=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=1\\x=-1\end{matrix}\right.\)