Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lam Anh Ngọc
Xem chi tiết
Lưu Nguyễn Hà An
8 tháng 1 2024 lúc 5:40

ko đăng hình đc nhé bạn.

Lam Anh Ngọc
Xem chi tiết
NGUYEN PHUONG DUY
Xem chi tiết
.
14 tháng 3 2020 lúc 10:24

a) x+15 là bội của x+3

\(\Rightarrow\)x+15\(⋮\)x+3

\(\Rightarrow\)x+3+12\(⋮\)x+3

x+3\(⋮\)x+3

\(\Rightarrow\)12\(⋮\)x+3

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)

Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}

b) (x+1).(y-2)=3

\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}

Có :

x+11-13-3
x0-22-4
y+23-31-1
y1-5-1-3

Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}

Câu c tương tự câu b

Khách vãng lai đã xóa
.
14 tháng 3 2020 lúc 10:29

g) Ta có : (x,y)=5

\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)

Mà x+y=12

\(\Rightarrow\)5m+5n=12

\(\Rightarrow\)5(m+n)=12

\(\Rightarrow\)m+n=\(\frac{12}{5}\)

Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...

Khách vãng lai đã xóa
Hồ Trường Giang
28 tháng 11 2024 lúc 21:05

Ehhhxjeiigcjivjfibhfjfjidifofidbgfjcufychcnl Ochocinco and the new year has a nice 👌👍✨👏🙂that is the same thing about this place of the year for hiiepj

Nguyen Khanh Linh
Xem chi tiết
hello7156
Xem chi tiết
HaNa
29 tháng 5 2023 lúc 23:04

a.

Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)

Mà \(\left(x^2+y^2+10\right)⋮xy\)  nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

Ta có \(xy⋮4\)

Do đó \(\left(x^2+y^2+10\right)⋮4\).

Mà \(x^2⋮4,y^2⋮4\)  nên \(10⋮4\)  (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số lẻ.

Đặt \(d=ƯCLN\left(x,y\right)\)

Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)

Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)

Vậy \(ƯCLN\left(x,y\right)=1\)

b. Theo đề suy ra \(kxy=x^2+y^2+10\)

Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)

Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)

Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)

Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)

Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)

Nên \(\left(x^2+y^2+10\right)⋮3\)  \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.

\(\RightarrowƯCLN\left(xy,3\right)=1\)\(x^2\) và \(y^2\) chia cho 3 dư 1.

Do đó \(\left(x^2+y^2+10\right)⋮3\)  nên \(kxy⋮3\)  mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)

\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)

Mà \(k\in N\)* nên \(k\ge12\)

Myrie thieu nang :)
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
21 tháng 12 2020 lúc 10:29

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

Linh Vũ khánh
9 tháng 12 2021 lúc 21:28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

ami02
Xem chi tiết
Vương Cấp
30 tháng 10 2021 lúc 3:20

B3 : t chỉ m r á :3
B4 : 
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
   = 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
   = 4 ( x2 + xy + xz ) ( x+ xy + xz + yz ) + y2x2
Đặt a = x+ xy + xz và b= yz , ta có :
  ⇒ C = 4a( a + b ) + b2
          = b2 + 4ab + 4a2
          = ( b + a )2
  ⇒ C là số chính phương 
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!yeu
            

Thiên Y
Xem chi tiết
Nguyễn Tất Đạt
30 tháng 7 2018 lúc 18:48

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

Nguyễn Ngọc Bảo Trâm
Xem chi tiết
Yen Nhi
9 tháng 4 2021 lúc 18:29

Ta thấy: \(2=0+2=2+0=1+1\)

Trường hợp 1:

Với \(|x|=0\)thì  \(x=0\)

      \(|y|=2\)thì \(y=-2\) hoặc \(2\)

=> Với trường hợp 1 thì có hai cặp 9 x, y ) thỏa mãn là:

\(x=0;y=-2\)và \(x=0;y=2\)

Trường hợp 2:

Với \(|x|=2\)thì \(x=-2\)hoặc \(2\)

      \(|y|=0\)thì \(y=0\)

=> Với trường hợp 2 thì có cặp ( x , y ) thỏa mãn là:

\(x=-2;y=0\)và \(x=2;y=0\)

Trường hợp 3:

Với \(|x|=1\)thì \(x=-1\)hoặc \(1\)

       \(|y|=1\)thì \(y=-1\)hoặc \(1\)

=> Với trường hợp 3 thì có 4 cặp ( x , y ) thỏa mãn là:

\(x=1;y=-1\)

\(x=-1;y=1\)

\(x=1;y=-1\)

\(x=1;y=1\)

Vậy qua 3 trường hợp thì có \(4+2+2=8\)cặp ( x , y ) thỏa mãn yêu cầu của đề bài 

Khách vãng lai đã xóa
Kha Mi
Xem chi tiết