cho 2 số x, y (x,y<0). Biết \(\frac{x}{2}=\frac{y}{2}\)và 6xy=1. Khi đó x =
bày mình cách làm nha
Cho hàm số y= 2+ x, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = 2 - x, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = x - 2, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = x + 2, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y= 2+ x, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = 2 - x, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = x - 2, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
Cho hàm số y = x + 2, vẽ đồ thị hàm số của y khi x = -2,-1,0,1,2,3
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
Cho x, y là 2 số nguyên dương mà x^2 + y^2 + 10 chia hết cho xy.
a) C/m x, y là 2 số lẻ và (x,y)=1
b) C/m k=(x^2 + y^2 + 10)/xy chia hết cho 4 và k >=12
a.
Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)
Mà \(\left(x^2+y^2+10\right)⋮xy\) nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
Ta có \(xy⋮4\)
Do đó \(\left(x^2+y^2+10\right)⋮4\).
Mà \(x^2⋮4,y^2⋮4\) nên \(10⋮4\) (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số lẻ.
Đặt \(d=ƯCLN\left(x,y\right)\)
Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)
Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)
Vậy \(ƯCLN\left(x,y\right)=1\)
b. Theo đề suy ra \(kxy=x^2+y^2+10\)
Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)
Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)
Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)
Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)
Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)
Nên \(\left(x^2+y^2+10\right)⋮3\) \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.
\(\RightarrowƯCLN\left(xy,3\right)=1\), \(x^2\) và \(y^2\) chia cho 3 dư 1.
Do đó \(\left(x^2+y^2+10\right)⋮3\) nên \(kxy⋮3\) mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)
\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)
Mà \(k\in N\)* nên \(k\ge12\)
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Bài 3: Cho x là số nguyên. CMR:
B=x^4-4x^3-2x^2+12x+9 là số bình phương nguyên
Bài 4: Cho x,y,z là số nguyên.CMR:
C=4x.(x+y).(x+y+z).(x+z)+y^2.z^2 là số chính phương
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
1. Cho x >= 0;y >= 0 và x+y=1. Tìm Min, Max của A=x^2+y^2
2. Cho 2 số thực x,y thỏa mãn x^2+y^2 <= x+y. CMR x+y <= 2
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
cho 2 số x và y là các số nguyên sao cho |x| + |y| = 2 . Số cặp (x;y) thỏa mãn là ?
Ta thấy: \(2=0+2=2+0=1+1\)
Trường hợp 1:
Với \(|x|=0\)thì \(x=0\)
\(|y|=2\)thì \(y=-2\) hoặc \(2\)
=> Với trường hợp 1 thì có hai cặp 9 x, y ) thỏa mãn là:
\(x=0;y=-2\)và \(x=0;y=2\)
Trường hợp 2:
Với \(|x|=2\)thì \(x=-2\)hoặc \(2\)
\(|y|=0\)thì \(y=0\)
=> Với trường hợp 2 thì có cặp ( x , y ) thỏa mãn là:
\(x=-2;y=0\)và \(x=2;y=0\)
Trường hợp 3:
Với \(|x|=1\)thì \(x=-1\)hoặc \(1\)
\(|y|=1\)thì \(y=-1\)hoặc \(1\)
=> Với trường hợp 3 thì có 4 cặp ( x , y ) thỏa mãn là:
\(x=1;y=-1\)
\(x=-1;y=1\)
\(x=1;y=-1\)
\(x=1;y=1\)
Vậy qua 3 trường hợp thì có \(4+2+2=8\)cặp ( x , y ) thỏa mãn yêu cầu của đề bài
Bài 1: CHo 2 số thực x,y sao cho x+y=1. Tìm Min của M=5x2+y2
Bài 2: Cho 2 số x,y thỏa mãn x2+2xy+8(x+y)+2y2+12=0 Tìm Max và Min của N=x+y+1