tim x , biet: \(\sqrt{x^2}\)|x+2|=x
tim x biet
\(\sqrt[n]{\left(x-2\right)^2}+4\sqrt[n]{x^2-4}=5\sqrt[n]{\left(x+2\right)^2}\)
Với \(x\ge2\)thì ta đặt
\(\hept{\begin{cases}\sqrt[n]{x-2}=a\\\sqrt[n]{x+2}=b\end{cases}}\)thì pt ban đầu thành
\(a^2+4ab=5b^2\Leftrightarrow\left(a^2-ab\right)+\left(5ab-5b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+5b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=-5b\left(2\right)\end{cases}}\)
Giải (1) \(\sqrt[n]{x-2}=\sqrt[n]{x+2}\)
\(\Leftrightarrow0x=4\left(loại\right)\)
Pt(2) làm tương tự
Sau đó xét các trường hợp còn lại của x rồi suy ra tập nghiệm
tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
tim x biet \(x-2\sqrt{x}=0\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy x=0 hoặc x=4 là giá trị cần tìm
\(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0;4}
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Rightarrow}}\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
tim x,y,z biet \(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|\)
Tim x,y,z biet: \(\dfrac{1}{2}\left(x+y+z\right)-3=\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-4}\)
ĐK : \(x\ge2,y\ge3,z\ge4\) .
\(pt\Leftrightarrow x+y+z-6=2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-4}\)
\(\Leftrightarrow\left[\left(x-2\right)-2\sqrt{x-2}+1\right]+\left[\left(y-3\right)-2\sqrt{y-3}+1\right]+\left[\left(z-4\right)-2\sqrt{z-4}+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-4}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(TM\right)\)
Tim x biet
a)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x+\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}+1=0\left(loại\right)\end{array}\right.\)\(\Leftrightarrow x=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\left(tm\right)\\x=6\left(tm\right)\end{array}\right.\)
Tim x biet
\(\sqrt{x^2}.\)/x+2/x
x=0 đó .tích cho mình đi mình giải câu này rồi
tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}\)+Ix+y+zI=0
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x+y=-z\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x=-z-y\end{cases}}\)
tim x biet: \(\sqrt{\dfrac{x+1}{x-1}}\)=2
ĐK : \(x>1\) hoặc \(x\le-1\)
Ta có : \(\sqrt{\dfrac{x+1}{x-1}}=2\)
\(\Leftrightarrow\dfrac{x+1}{x-1}=4\)
\(\Leftrightarrow x+1=4x-4\)
\(\Leftrightarrow-3x=-5\)
\(\Leftrightarrow x=\dfrac{5}{3}\) ( Thỏa mãn )
Vậy \(x=\dfrac{5}{3}\)
Chúc bạn học tốt ...
ĐKXĐ x - 1 >0 <=> x>1
<=> \(\dfrac{x+1}{x-1}\) = 4 (bình phương cả 2 vế)
<=> x + 1 = 4x - 4
<=> x - 4x = - 4 -1
<=> -3x = -5
<=> x = 5/3 (TM)