Tìm nghiệm nguyên dương của phương trình
7(x2y + x + xy2 + 2y) -38 = 38xy
tìm nghiệm nguyên của phương trình : x3 - x2y + 3x -2y - 5 = 0
Lời giải:
PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$
$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$
Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$
$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$
$\Leftrightarrow x-5\vdots x^2+2(1)$
$\Rightarrow x^2-5x\vdots x^2+2$
$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$
$\Leftrightarrow 5x+2\vdots x^2+2(2)$
Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$
$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:
$\Rightarrow x^2+2\in\left\{3;9;27\right\}$
$\Rightarrow x^2\in\left\{1;7;25\right\}$
Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$
Thay vào $y$ ta tìm được:
$x=-1\Rightarrow y=-3$
$x=5\Rightarrow y=5$
Cho hệ phương trình x 3 - y 3 - x 2 y + x y 2 - 2 x y - x + y = 0 x - y = x 3 - 2 x 2 + y + 2 Số nghiệm của hệ phương trình là:
A. 2
B. 1
C. 0
D. 3
tìm x, y >0
\(7\left(x^2y+x+xy^2+2y\right)-38=38xy\)
Trần Phúc Khang đúng rồi bạn, mình bị thiếu í
tìm nghiệm nguyên dương của phương trình: xyz=x+2y+3z-5
Tìm nghiệm nguyên dương của phương trình $(x+2y)(3x+4y)=96$.
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
ta có 96=6.16
xy là các số nguyên nên 3x+4y>x+2y
do đó xy là các nghiệm nguyên dương của phương trình khi
3x+4y+16
x+2y=6
giẢI hệ ta được x=4 y=1
vậy nghiệm của phương trình là (4,1)
Hệ phương trình {2x3+x2y=32y3+xy2=3 có nghiệm duy nhất (xo;yo) . Tính x3o+y3o.
\(\left\{{}\begin{matrix}2x^3+x^2y=3\left(1\right)\\2y^3+xy^2=3\end{matrix}\right.\)
Trừ vế theo vế hai phương trình ta được:
\(2\left(x^3-y^3\right)+\left(x^2y-xy^2\right)=0\)
\(\Leftrightarrow2\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+3xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\right]=0\left(2\right)\)
Do \(2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\ge0\), đẳng thức xảy ra khi \(x=y=0\)
Thay vào phương trình ta thấy \(x=y=0\) không phải là nghiệm
\(\Rightarrow2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2>0\)
Khi đó \(\left(2\right)\Leftrightarrow x=y\)
\(\left(1\right)\Leftrightarrow2x^3+x^3=3\Leftrightarrow x=y=1\)
\(\Rightarrow x_0^3+y_0^3=2\)
tập làm quen gõ công thức toán học đi bạn? :D
Tìm tất cả các nghiệm nguyên dương của phương trình :\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
tìm số nghiệm nguyên dương của phương trình: x+2y+ 3z=100
Tìm các nghiệm nguyên dương của phương trình : x^2 +x + xy -2y^2 - y =5
\(x^2+x+xy-2y^2-y=5\)
\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)
\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)
\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)
Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)
Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)
Do đó \(\left(x-y\right)\inℤ^+\)
Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))
\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))
Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)
Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.