giúp mình nhé, cần gấp lắm:
\(3x^3-6x^2+5=6x\left(x-2\right)\sqrt{x^2-x+1}\)
Giaỉ phương trình\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Gíup mình nha ,mình đag cần gấp
rồi bấy bề
giờ còn mỗi bài cực trị thôi
đợi mình up thêm nha
Giúp mình giải hai phương rình này nhé =)) Mình cần gấp lắm. Thanks
\(\left(\sqrt{3-x}+2\right)^2+x=13\)
\(1+\sqrt{3x+1}=3x\)
= 3-x +4can 3-x +4 +x =13
4căn 3-x = 6
16(3-x) = 36
48-36 = 16x
x = 16/12 = 4/3
Đặng Quỳnh Ngân:khùng à giải "HỆ" phương trình cơ mà
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
\(\sqrt{x^2+6x+11}\)
\(\sqrt{\frac{\left(2x-3\right)\left(x+2\right)}{\left(x+3\right)^2}}\)
\(\sqrt{\frac{-x^2-5}{x^2+1}}\)
Tìm điều kiện xác định của mỗi căn thức
Giúp mình với mình đang cần gấp
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\)
AI GIÚP MK VỚI MK CẦN GẤP
\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)
Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)
Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)
Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)
Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)
k) \(\sqrt{\left(X-2005\right)^2}+\sqrt{\left(X-2006\right)^2}=1\)l) \(\sqrt{X-3}+4\sqrt{3X+4}=x^2-6x+25\)Giúp mình với, ai biết câu nào làm câu nấy, là hết thì càng tốt ạ. Mình cảm ơn nhé !
các bạn chỉ cần đưa về dạng \(A^2=B^2\)hoặc \(A^2+B^2=0\)thôi nhé, GIẢI NHANH GIÚP MÌNH NHÉ
a, \(3x^2+6x-3=\sqrt{\frac{x+7}{3}}\)
b,\(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+2}-1\right)\)
a)\(3x^2+6x-3=\sqrt{\frac{x+7}{3}}\)
Đk:\(x\ge-7\)
\(pt\Leftrightarrow9x^4+36x^3+18x^2-36x+9=\frac{x+7}{3}\)
\(\Leftrightarrow9x^4+36x^3+18x^2-36x+9-\frac{x+7}{3}=0\)
\(\Leftrightarrow\left(x^2+\frac{5x}{3}-\frac{4}{3}\right)\left(9x^2+21x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{69}+7}{6}\\x=\frac{\sqrt{73}-5}{6}\end{cases}}\) (thỏa)
b)\(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+2}-1\right)\)
\(\Leftrightarrow2x^2+2x+1=\left(2x+3\right)\sqrt{x^2+x+2}-2x-3\)
\(\Leftrightarrow2x^2+4x+4=\left(2x+3\right)\sqrt{x^2+x+2}\)
\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}=\sqrt{x^2+x+2}\)
\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}-2x=\sqrt{x^2+x+2}-2x\)
\(\Leftrightarrow\frac{2x^2+4x+4}{2x+3}-2x=\frac{x^2+x+2-4x^2}{\sqrt{x^2+x+2}+2x}\)
\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}=\frac{x^2+x+2-4x^2}{\sqrt{x^2+x+2}+2x}\)
\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}=\frac{-\left(x-1\right)\left(3x+2\right)}{\sqrt{x^2+x+2}+2x}\)
\(\Leftrightarrow\frac{-2\left(x+2\right)\left(x-1\right)\left(3x+2\right)}{\left(2x+3\right)\left(3x+2\right)}-\frac{-\left(x-1\right)\left(3x+2\right)}{\sqrt{x^2+x+2}+2x}=0\)
\(\Leftrightarrow-\left(x-1\right)\left(3x+2\right)\left(\frac{2\left(x+2\right)}{\left(2x+3\right)\left(3x+2\right)}-\frac{1}{\sqrt{x^2+x+2}+2x}\right)=0\)
\(\Leftrightarrow x=1;x=-\frac{2}{3}\) (thỏa)
mình bảo là đưa về dạng \(A^2=B^2\)hoặc \(A^2+B^2=0\)cơ, giúp mình nhé
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)