Cho tam giác ABC cân tại C. Gọi M là trung điểm của DE.
a/ Chứng minh tam giác CDM=tam giác CEM.
b/ Vẽ MH vuông góc với CD tại H, MK vuông góc với CE tại K
Chứng minh MH=MK
c/Chứng minh CM vuông góc với HK
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
2) mình làm câu a thôi nha
a) Tam giác ABC vuông tại A
Suy ra AB^2+AC^2=BC^2
AC^2=BC^2-AB^2=5^2-4^2=3^2
Suy ra AC=3 cm
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F
a: Xet ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác củagóc BCD
b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
=>ΔCEF cân tạiC
Xet ΔCDB có CE/CD=CF/CB
nên EF//DB
c: IE=IF
IF<IB
=>IE<IB
Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. E là điểm nằm giữa M và C ( không trùng với M và C ). Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K.
1) Chứng minh BH=AK
2) Tam giác MHK vuông cân
3) Gọi I là trung điểm của AH. Chứng minh IM vuông góc BK
xét tam giác BAH có \(\widehat{BHA}=90^0\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^0\)( 2 Góc phụ nhau )
mà \(\widehat{BAH}+\widehat{KAC}=\widehat{BAC}=90^0\)
\(\Rightarrow\widehat{ABH}=\widehat{KAC}\)
Xét \(\Delta ABH\)và \(\Delta CAK\)có:
\(\hept{\begin{cases}\widehat{BHA}=\widehat{AKC}=90^0\\AB=AC\left(gt\right)\\\widehat{ABH}=\widehat{KAC}\left(cmt\right)\end{cases}\Rightarrow\Delta ABH=\Delta CAK\left(ch-gn\right)}\)
\(\Rightarrow BH=AK\)( 2 cạnh tương ứng ).
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
Cho tam giác ABC cân tại A, góc A < 90o. Kẻ BD vuông góc với AC tại D, EC vuông góc với AB tại E. Gọi I là giao điểm của CE và BD.
a, Biết AB = 15cm, AE = 9cm. Tính EC
b, Chứng minh: BD = CE
c, Chứng minh: Tam giác IBE = tam giác ICD
d, Gọi M là trung điểm của BC. Chứng minh 3 điểm A, I, M thẳng hàng
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng.
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)
Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.
d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)
Xét \(\Delta\) NHM và \(\Delta\) NKM có:
^NKM = ^NHM = 90o
NM là cạnh chung đồng thời là cạnh huyền
^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)
Suy ra \(\Delta\) NHM = \(\Delta\) NKM (cạnh huyền - góc nhọn)
Suy ra NK = NH (1) và MK = MH (2)
Xét \(\Delta\)MHD và \(\Delta\) MKA có:
MK = MH (chứng minh ở (2))
^KMA = ^HMD (đối đỉnh)
MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)
Suy ra \(\Delta\)MHD = \(\Delta\) MKA (c.g.c) (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)
Suy ra KA = HD (3)
Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.
Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.
Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.