Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh
Xem chi tiết
Nguyễn Tuấn Minh
24 tháng 4 2017 lúc 20:28

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

๖Fly༉Donutღღ
24 tháng 4 2017 lúc 20:34

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

๖Fly༉Donutღღ
24 tháng 4 2017 lúc 20:51

2) mình làm câu a thôi nha

a) Tam giác ABC vuông tại A

Suy ra AB^2+AC^2=BC^2

                    AC^2=BC^2-AB^2=5^2-4^2=3^2

Suy ra AC=3 cm
 

hoàng bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2023 lúc 23:55

a: Xet ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CA là phân giác củagóc BCD

b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có

CI chung

góc ECI=góc FCI

=>ΔCEI=ΔCFI

=>CE=CF

=>ΔCEF cân tạiC

Xet ΔCDB có CE/CD=CF/CB

nên EF//DB

c: IE=IF

IF<IB

=>IE<IB

Nguyen Dinh Minh Tu
Xem chi tiết
Nguyen Dinh Minh Tu
Xem chi tiết
Nguyen Dinh Minh Tu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
ReTrueOtaku
25 tháng 4 2019 lúc 9:47

nếu không biết thì có đc trl không ??? :) 

Lê Tài Bảo Châu
25 tháng 4 2019 lúc 9:53

A B C M E H K I F P

 Xin tự tloi

Lê Tài Bảo Châu
25 tháng 4 2019 lúc 9:59

xét tam giác BAH có \(\widehat{BHA}=90^0\)

\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^0\)( 2 Góc phụ nhau ) 

 mà \(\widehat{BAH}+\widehat{KAC}=\widehat{BAC}=90^0\)

\(\Rightarrow\widehat{ABH}=\widehat{KAC}\)

Xét \(\Delta ABH\)và \(\Delta CAK\)có:

   \(\hept{\begin{cases}\widehat{BHA}=\widehat{AKC}=90^0\\AB=AC\left(gt\right)\\\widehat{ABH}=\widehat{KAC}\left(cmt\right)\end{cases}\Rightarrow\Delta ABH=\Delta CAK\left(ch-gn\right)}\)

\(\Rightarrow BH=AK\)( 2 cạnh tương ứng ).

Hà Ngọc Uyên Phương
Xem chi tiết
Dương Hoàng Bách
10 tháng 2 2022 lúc 20:39

b1 

a) CM tam giác chứaHB và chứa HC = nhau

b) CM tam giác chứa 2 góc A = nhau

Khách vãng lai đã xóa
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2022 lúc 13:54

a: EC=12cm

b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có

BA=CA
góc BAD chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có

EB=DC

góc IBE=góc ICD

Do đó: ΔIBE=ΔICD

d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta co: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có MB=MC

nen M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

minh son
Xem chi tiết
tth_new
21 tháng 7 2019 lúc 8:43

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

tth_new
21 tháng 7 2019 lúc 9:03

A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)

Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.

d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)

Xét  \(\Delta\) NHM và \(\Delta\) NKM  có:

^NKM = ^NHM = 90o

NM là cạnh chung đồng thời là cạnh huyền

^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)

Suy ra   \(\Delta\) NHM = \(\Delta\) NKM  (cạnh huyền - góc nhọn)

Suy ra NK = NH (1) và MK = MH (2)

Xét \(\Delta\)MHD và \(\Delta\) MKA có:

MK = MH (chứng minh ở (2))

^KMA = ^HMD (đối đỉnh)

MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)

Suy ra  \(\Delta\)MHD = \(\Delta\) MKA  (c.g.c)  (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)

Suy ra KA = HD (3)

Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.

Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.

Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.