Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy7a4
Xem chi tiết
Trần Tuyết Như
24 tháng 3 2015 lúc 13:56

 

hình vẽ ko đep you thông cảm nhá

xét 2 tam giác: MAC và NAB, có:

AC = AB ( tam giác ABC cân tại A)

A là góc chung

AM = AN ( vì tam giác ABC cân tại A => AB = AC, mà M và N là trung điểm của AB và AC => AM = AN)

vậy tam giác MAC = tam giác NAB ( c-g-c)

=> CM = BN ( 2 góc tương ứng) (điều phải chứng minh)

1 đúng nhé

 

Trần Tuyết Như
24 tháng 3 2015 lúc 14:04

you tự vẽ hình nha

xét tam giác: ABN và ACM, ta có:

AB = AC ( vì tam giác ABC cân tại  A)

A là góc chung

vì tam giác ABC cân tại A nên AB = AC, mà M, N đều là trung điểm của AB và AC nên MA = NA

vậy tam giác ABN = tam giác ACM ( c-g-c)

BN = CM ( 2 cạnh tương ứng)       ( điều phải chứng minh )

1 đúng nhé

Nông Quang Thức
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 22:05

a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔANC và ΔAMB có 

AN=AM(cmt)

\(\widehat{NAC}\) chung

AC=AB(ΔABC cân tại A)

Do đó: ΔANC=ΔAMB(c-g-c)

b) Ta có: ΔANC=ΔAMB(cmt)

nên NC=MB(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng)

Ai Biết
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2021 lúc 21:53

Ta có: \(AN=CN=\dfrac{AC}{2}\)(N là trung điểm của AC)

\(AM=BM=\dfrac{AB}{2}\)(M là trung điểm của AB)

mà AC=AB(ΔABC cân tại A)

nên AN=CN=AM=BM

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)(tia BN nằm giữa hai tia BA,BC)

\(\widehat{ACM}+\widehat{BCM}=\widehat{ACB}\)(tia CM nằm giữa hai tia CA,CB)

mà \(\widehat{ABN}=\widehat{ACM}\)(cmt)

và \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)

nên \(\widehat{CBN}=\widehat{BCM}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

my nguyễn
Xem chi tiết
Bùi Thị Vân Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 11:34

a: Xét ΔABN vầ ΔACM có

AB=AC

góc A chung

AN=AM

=>ΔABN=ΔACM

=>BN=CM

b: Xét ΔNAE và ΔNCB có

góc NAE=góc NCB

NA=NC

góc ANE=góc CNB

=>ΔNAE=ΔNCB

=>AE=CB

Xét ΔMDA và ΔMCB có

góc MAD=góc MBC

MA=MB

góc AMD=góc BMC

=>ΔMDA=ΔMCB

=>AD=BC=AE

=>A là trug điểm của DE

c: Xét tứ giác ADBC có

AD//BC

AD=BC

=>ADBC là hình bình hành

=>DB=AC=BA

Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hìh bình hành

=>CE=AB=DB

nguyen diem quynh
Xem chi tiết
Trần Hải Việt シ)
Xem chi tiết
Flower in Tree
19 tháng 12 2021 lúc 14:51

a) Ta có: ΔABC cân tại A (gt)

=> ˆB=180−ˆA2B^=180−A^2 (công thức của tam giác cân xem trong SGK)

Và AB = AC

Vì BM + AM = CN + AN

Mà AB = AC (cmt) và BM = CN (gt)

Nên AM = AN

Do đó ΔAMN là tam giác cân

=> ˆM=180−ˆA2M^=180−A^2

=> ˆM=ˆBM^=B^

Mà hai góc này ở vị trí đồng vị

Nên MN // BC

Vậy MN // BC

b) Xét hai tam giác ANB và AMC có:

AN = AM (cmt)

ˆAA^ là góc chung

AB = AC (cmt)

Nên ΔANB = ΔAMC (c.g.c)

Do đó ˆABN=ˆACMABN^=ACM^ (hai góc tương ứng)

Lại có: ˆABC=ˆACBABC^=ACB^ (vì ΔABC cân tại A)

Nên ˆIBC=ˆICBIBC^=ICB^

=> ΔIBC cân tại I

Vậy tam giác IBC cân tại I

Khách vãng lai đã xóa
NNMg
Xem chi tiết
Buddy
24 tháng 1 2021 lúc 19:55

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 20:14

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

kakaruto ff
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 20:31

a: Xét ΔNBC và ΔMCB có 

NC=MB

\(\widehat{NCB}=\widehat{MBC}\)

BC chung

Do đó: ΔNBC=ΔMCB

Suy ra: CN=MB

b: Xét ΔOBC có \(\widehat{OCB}=\widehat{OBC}\)

nên ΔOBC cân tại O