So sánh :
\(\dfrac{2^{2010}+1}{2^{2007}+1}\) và\(\dfrac{2^{2012}+1}{2^{2009}+1}\)
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
1. \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
2. So sánh: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}\) và \(\dfrac{2008+2009}{2009+2010}\)
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
Tính:
1) A=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
2) B=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2006}+\sqrt{2007}}\)
Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào
a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)
b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)
Tính giá trị biểu thức
B=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+\dfrac{2009}{3}+...+\dfrac{1}{ }2011}\)
Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))
Giải phương trình:
a/ \(\dfrac{x+1}{x^2+x+1}\) - \(\dfrac{x-1}{x^2-x+1}\) = \(\dfrac{3}{x\left(x^4+x^2+1\right)}\)
b/ \(\dfrac{9-x}{2009}\) + \(\dfrac{11-x}{2011}\) = 2
c/ \(\dfrac{15-x}{2010}\) + \(\dfrac{17-x}{2012}\) + \(\dfrac{19-x}{2014}\) = 3
d/ \(\dfrac{x-2014}{2007}\) + \(\dfrac{x-2012}{2009}\) + \(\dfrac{x-10}{2011}\) = \(\dfrac{x-2017}{2014}\) + \(\dfrac{x-2009}{2012}\) + \(\dfrac{x-2011}{2010}\)
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+\dfrac{2009}{3}+...+\dfrac{1}{2011}}\)
Đặt B= \(\dfrac{2011}{1}+\dfrac{2010}{2}+.......+\dfrac{1}{2011}\)
Cộng 1 vào ta được:
B=(\(\dfrac{2012}{1}+\dfrac{2012}{2}+.......+\dfrac{2012}{2011}\)+\(\dfrac{2012}{2012}\)) -2012
-> B= 2012 (\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2011}\)+\(\dfrac{1}{2012}\)) -2012+\(\dfrac{2012}{1}\)
Thay vào P ta được:
P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)}\)
-> P= \(\dfrac{1}{2012}\)
có chỗ nào chưa hiểu hỏi mình nha!
2. So sánh A và B:
A= 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010
B=-1/2006*2007 - 1/2008*2009
\(A=\dfrac{5^{2011}-5^{2010}+5^{2009}-5^{2008}+....+5-1}{5^{2013}-5^{2012}+5^{2011}-5^{2010}+....+5-1}\) \(B=\dfrac{5^{2009}-5^{2008}+5^{2007}-5^{2006}+....+5-1}{5^{2011}-5^{2010}+5^{2009}-5^{2008}+....+5-1}\)
So sánh A và B
Tính nhanh:
a) A = 2\(^{2010}\) - 2\(^{2009}\) - 2\(^{2008}\) - 2\(^{2007}\) - ... - 2 - 1
b) B = 20 . 8 - 33 . 64 + 17 . 8 + 9 . 16 . 8 - 11 . 128
c) C = ( \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + ... + \(\dfrac{1}{2009.2010.2011}\) ) . \(\dfrac{2010.2011}{1010.527}\)
a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)
\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)
⇒ \(A=2^{2010}-1\)
⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)
⇒ \(A=1\)
b) \(B=2072\)
c) \(\dfrac{4949}{19800}\)
Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !