Cho ΔABC đều và D là một điểm thuộc cạnh BC. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Bx sao cho \(\widehat{CBx} = \widehat{CAD}\). Tia Bx cắt tia AD tại E. Chứng minh rằng: EA = EB + EC.
Cho tam giác ABC đều và D là một điểm thuộc cạnh BC. Trên nửa mặt phẳng bờ BC không chứa điểm A; vẽ tia Bx sao cho góc CBx = góc CAD. Tia Bx cắt tia AD tại E. Chứng minh rằng EA = EB + EC. Mk cần gấp ! Cảm ơn trước nhé !
Không thể nào có chuyện EA = EB + EC. Nếu là chứng minh AD = BE + Ex thì mình làm được chứ cái đề như vậy là mình bó tay
cho tam giác ABC đều và D là một điểm thuộc cạnh BC.Trên nửa mặt phẳng bờ BC không chứ điểm A;Vẽ tia Bx sao cho CBx=CAD.Tia Bx cắt tia AD tại E.Chứng minh rằng EA=EB+EC
Cho tam giác cân abc gọi d là 1 điểm trên cạnh bc trên nửa mặt phẳng bờ bc không chứa điểm A kẻ tia Bx sao cho CBx = CAD , tia Bx cắt AD ở E . CMR tích AD x AE không đổi khi D thay đổi trên BC
cái đề em biết rồi chị nhắn tên bài cho em nhé là em giúp chị
Xét tg ACD và tg BED có
^ADC = ^BDE (góc đối đỉnh)
^CAD = ^CBE (đề bài)
=> ^ACB = ^AEB => C và E cùng nhìn AB dưới 1 góc = nhau và = ^ACB không đổi
=> A;B;E;C cùng nằm trên 1 đường tròn cố định (Do A;B;C cố định)
Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H và đường tròn ngoại tiếp tứ giác ABEC tại F
Do ABC cân tại A => AF cũng là đường trung trực thuộc cạnh BC của tg ABC => Tâm đường tròn ngoại tiếp tứ giác AABEA thuộc AF => AF là đường kính của đường tròn ngoại tiếp tứ giác ABEC.
Nối E với F => ^AEF = 90 (góc nội tiếp chắn nửa đường tròn)
Xét tg vuông AHD và tg vuông AEF có
^EAF chung
=> tg AHD đồng dạng với tg AEF nên \(\frac{AD}{AF}=\frac{AH}{AE}\Rightarrow AD.AE=AH.AF\)
Do A,B,C cố định => AH không đổi
Do đường tròn ngoại tiếp tứ giác ABEC cố định => AF không đổi
=> AD.AE=AH.AF không đổi
tam giác ABC đều , E thuộc BC . Trên nửa mặt phẳng bờ chứa tia BC ko chứa A , vẽ tia Bx sao cho CBx = CAE . Bx cắt tia AE tại D . CMR :
DA = DB + DC
Cho tam giác ABC. Trên nửa mặt phẳng bờ BC không chứa A vẽ tia Bx vuông góc với BA, trên Bx lấy điểm D sao cho BD = BA. Trên nửa mặt phẳng bờ BC chứa A vẽ tia By vuông góc với BC, trên By lấy E sao cho BE = BC. Chứng minh EA vuông góc với CD.
Cho tam giác ABC đều, một điểm E thuộc BC trong nửa mặt phẳng bờ là đường thẳng BC không chứa A, dựng tia Bx sao cho \(\stackrel\frown{CBx}=\stackrel\frown{CAE}\) . Tia Bx cắt tia AE tại D. Chứng minh DA= DB+ DC.
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC, lấy điểm D trên đoạn BM. Kẻ BH, CK lần lượt vuông góc với tia AD tại H và K.
a,Chứng minh BH= AK.
b,Tma giác HMK vuông cân.
c, Trên nửa mặt phẳng bờ AB chứa điểm C, kẻ tia Bx sao cho \(\widehat{ABx}\)=135 độ. Lấy E trên đoạn thẳng AB, qua E kẻ đường thẳng vuông góc với EC cắt Bx tại F. Chứng minh EC= EF.
Bạn biết câu này rồi đúng ko, bạn giúp mình với mik cũng đang cần gấp câu này cụ thể là câu c
Cho ABC có Đ là Trung điểm của BC. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Bx//AC, Bx cắt AD ở E a, chứng minh tam giác ADC=tam giác EDB b, Trên tia đối của tia AC, lấy điểm F sao cho AF=AC. Gọi I là giao điểm của AB và EF. Chứng minh tam giác AIF= tam giác BIE.
a) Xét ΔADC và ΔEDB có
\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)
DC=DB(D là trung điểm của BC)
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
Do đó: ΔADC=ΔEDB(g-c-g)
Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ tia By vuông góc với B, trên By lấy điểm E sao cho BE = BA. Chứng minh rằng :
a) DA = EC
b) DA vuông góc với EC
Có Bx _|_ BC tại B (gt)
=> ^CBx = 90o
=> B1 + B2 = 90o (1)
Cmtt được B2 + B3 = 90o (2)
Từ (1)(2) => B1 = B3
Xét ∆BAD và ∆BEC có :
BD = BC (gt)
B1 = B3 (cmt)
BA = BE
=> ∆BAD = ∆BEC (c-g-c)
=> DA = CE
b) Gọi H là giao điểm của DA và CE
và K là ______________ DA và BC
Ta có ^HKC = ^BKA (đối đỉnh) (3)
Có ∆BAD = ∆BEC (cmt)
=> ^BDA = ^BCE
Hay BDK = HCK
Từ (3),(4) => HKC + HCK = BKD + ADK (5)
....đoạn tiếp để sau làm cho :v
A ) Ta có : \(\Delta DAB=\Delta CEB\)( c . g . c )
\(\Rightarrow BE=BA\)
\(\Rightarrow\widehat{DBA}=\widehat{CBE}\)( PHỤ \(\widehat{ABC}\))
\(\Rightarrow DA=EC\)( đpcm)
b) Kéo dài AB cắt BC tại \(I\)cắt EC tại K
+ \(\widehat{ICK}=\widehat{IDB}\)( do (* ) )
+ \(\widehat{DBI}=\widehat{CIK}\)( VÌ 2 GÓC ĐỐI ĐỈNH )
\(\Rightarrow\widehat{ICK}+\widehat{CIK}=\widehat{IDB}+\widehat{DIB}\)
Mà \(\widehat{IDB}+\widehat{DIB}=90\)
Do tam giác DBI vuông tại B nên ICK + CIK = \(90^o\)
\(\Rightarrow\widehat{CIK}=90^o\)
\(\Rightarrow DA\perp EC\)
Chúc bạn học tốt !!!