Cho tam giác ABC vuông cân tại A ; M là trung điểm của BC . trên tia AM lấy D sao cho AD = 2AM
a, chứng minh AB = CD
b, chứng minh BD // AC
c, chứng minh AM = \(\dfrac{1}{2}\) BC
d, chứng minh tam giác MCD là tam giác vuông cân
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ các tam giác ABD vuông cân tại A, vẽ tam giác ABD vuông cân tại A, vẽ tam giác ACE vuông cân tại E. CMR: Tứ giác BDEC là hình thang cân
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ tam giác ABD vuông cân tại A, vẽ tam giác ACE vuông cân tại E. Chứng minh rằng tứ giác BDEC là hình thang cân.
cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ tam giác ABC vuông cân tại A. Vẽ tam giác ACE vuông cân tại E.C/m rằng BDEC là hình thang cân
Giúp mình với nha!!!!!!!!!!!!!!!!!!!!!
cho tam giác ABC vuông tại A. Vẽ phía ngoài tam giác ABC tam giác ABD vuông cân tại D, vẽ tam giác ACE vuông cân tại E
CM: BDEC là hình thang vuông
Cho tam giác ABC vuông cân tại A, vẽ về phía ngoài tam giác ABC tam giác BCD vuông cân tại B. Gọi N là điểm bất kỳ trên cạnh BD. Trung trực của CN cắt AB tại M. Chứng minh tam giác CMN là tam giác vuông cân.
Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì? Vì sao?
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
Cho tam giác ABC vuông cân tại A . Ở phía ngoài tam giác ABC vẽ tam giác BCD vuông cân tại B . Tứ giác ABDC là hình gì? Chứng minh
ΔBDC vuông cân tại B
=>góc BCD=góc BDC=45 độ
ΔABC vuông cân tại A
=>góc ABC=góc ACB=45 độ
góc ABC=góc DCB
mà hai góc này ở vị trí so le trong
nên AB//DC
mà AB vuông góc AC
nên DC vuông góc AC
Xét tứ giác ABDC có
AB//DC
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
Cho tam giác ABC vuông cân tại A, BC = 2 cm. Ở phía ngoài tam giác ABC, vẽ tam giác ACE vuông cân tại E. Chứng minh rằng AECB là hình thang vuông
Tam giác ABC vuông cân tại A
⇒ ∠ (ACB) = 45 0
Tam giác EAC vuông cân tại E
⇒ ∠ (EAC) = 45 0
Suy ra: ∠ (ACB) = ∠ (EAC)
⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)
nên tứ giác AECB là hình thang có ∠ E = 90 0 . Vậy AECB là hình thang vuông
Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì ? Vì sao ?
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.