Cho tam giác ABC vuông tại A có AB < AC.Vẽ \(AH\perp BC\) \(\left(H\in BC\right)\), D là điểm trên cạnh AC sao cho AD = AB. Vẽ \(DE\perp BC\left(E\in BC\right)\). Chứng minh HA = HE
Cho tam giác ABC vuông tại A có AB < AC . Vẽ \(AH\perp BC\left(H\in BC\right),D\)là điểm trên cạnh AC sao cho AD = AB. Vẽ \(DE\perp BC\left(E\in BC\right).\)Chứng minh rằng HA = HE
(lưu ý : vẽ thêm đường phụ)
△ABC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
vuông tại A nên⇒△MAB;△MAC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
cùng cân tại M⇒MD" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">.
vừa là đường cao, vừa là đường phân giác trong⇒△BMD=△AMD(c.g.c)⇒DBM^=DAM^=90∘→DB⊥BC" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
△AME=△CME(c.g.c)→ECM^=MAE^=90∘→CE⊥BC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
DB//CE" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
BD=DA;CE=AE→" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
đpcmbẠN kham khỏa nhé.
Cho tam giác ABC vuông tại A, AH\(\perp\)BC. Vẽ \(HD\perp AB\left(D\in AB\right),HE\perp AC\left(E\in AC\right)\). Biết BH =9cm, HC= 16cm. Tính DE
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow AH^2=9\cdot16=144\)
hay AH=12(cm)
Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)
\(\widehat{ADH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=DE(Hai đường chéo)
mà AH=12(cm)
nên DE=12cm
Cho tam giác ABC vuông tại A có AB=15cm, AC=20cm. Vẽ \(AH\perp BC\) tại H.
a) Tính BC, AH
b) Vẽ BD là phân giác của \(\widehat{ABC}\left(D\in AC\right)\) Tính DC
c) Gọi I là giao điểm của AH và BD. Chứng minh AI.AD = IH.DC
d) Trên cạnh HC lấy E sao cho HE=HA, qua E vẽ đường thẳng \(\perp BC\) cắt AC ở M, qua C vẽ đường thẳng \(\perp BC\) cắt tia phân giác của \(\widehat{MEC}\) tại F. Chứng minh H,M,F thẳng hàng
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Câu 4:
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
Do đó: ΔBDF=ΔEDC
Suy ra: BF=EC
Cho \(\Delta ABC\)vuông góc tại A, ( AB < AC ), vẽ \(AH\perp BC\left(H\in BC\right)\),Lấy \(D\in AC\)sao cho \(AD=AB\),vẽ \(DE\perp BC\left(E\in BC\right).C/mHA=HE\)
mong mọi người giúp ạ!!!!!
Kẻ DF vuông AH tại F
Xét \(\Delta\)DAF và \(\Delta\)ABH có: AD = AB ( gt ) ; ^DFA = ^AHB ( = 90 độ ) ; ^ADF = ^BAH ( cùng phụ ^ACH )
=> \(\Delta\)DAF = \(\Delta\)ABH ( cạnh huyền - góc nhọn )
=> DF = AH ( 1)
Nối DH Xét \(\Delta\)DFH và \(\Delta\)HED có: DH chung ; ^DFH = ^HED = 90 độ ; ^FDH = ^EHD ( vì DF//EH ( cùng vuông AH ); so le trong )
=> \(\Delta\)DFH = \(\Delta\)HED
=> DF = EH ( 2)
Từ (1) ; (2) => AH = EH
Cho tam giác ABC có AB = 4 cm , AC = 3cm , BC = 5 cm .
a) Tam giác ABC là tam giác gì ? vì sao ?
b) Vẽ \(AH\perp BC\left(H\in BC\right)\). Gọi AD là phân giác của góc BAH ( \(D\in BC\)) . Qua A vẽ đường thẳng xy song song với BC , trên xy lấy một điểm E sao cho AE = BD ( E và C nằm cùng phía với AB ) . CM : DE = AB
c) Chứng minh tam giác ADC cân
d) Gọi M là trung điểm của AD , là giao điểm của AH với DE . Chứng minh ba điểm C , I , M thẳng hàng
a) Tam giác ABC là tam giác vuông.Vì theo Py-ta-go .
Từ điểm M nằm trong tam giác ABC vẽ \(MD\perp BC\left(D\in BC\right);ME\perp AC\left(E\in AC\right);MF\perp AB\left(F\in AB\right)\). Trên các tia MD,ME,MF lần lượt lấy các điểm I,K,L sao cho \(\frac{MI}{BC}=\frac{MK}{AC}=\frac{ML}{AB}\). Chứng minh M là trọng tâm của tam giác IKL
Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.
Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800
Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)
Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)
Nên ^ECD = ^MKG hay ^ACB = ^MKG
Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)
=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)
Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG
Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)
Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng
Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)
MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)
Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông góc vs BC tại H. D là điểm trên cạnh AC sao cho AD = AB. Vẽ DE vuông góc vs BC tại E . CMR HA = HE
Cho tam giác ABC vuông tại A có AB<AC vẽ AH vuông với BC tại H, D là điểm trên AC sao cho AD=AB vẽ DE vuông với BC tại E.Chứng minh HA=HE
ΔABD vuông tại A có AD=AB
nên ΔABD vuông cân tại A
=>góc ABD=góc ADB=45 độ
góc DEB+góc DAB=180 độ
=>DEBA nội tiếp
=>góc BEA=góc BDA=45 độ
Xét ΔHAE vuông tại H có góc HEA=45 độ
nên ΔHAE vuông cân tại H
=>HA=HE