Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thị Hoài Linh
Xem chi tiết
Huỳnh Thị Đông Thi
20 tháng 3 2016 lúc 21:31

Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó. 

Để xác định hằng số C ta sử dụng điều kiện F(0)=1

Từ điều kiện này và biểu thức F(x) ta có :

\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)

Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm

Đạt Tuấn
Xem chi tiết
Akai Haruma
17 tháng 1 2018 lúc 22:54

Lời giải:

Ta có:

\(F(x)=\int f(x)dx=\int e^x\cos xdx\)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \cos xdx=\sin x\end{matrix}\right.\)

Do đó:

\(F(x)=\int e^x\cos xdx=e^x\sin x-\int \sin x.e^xdx+c\) (1)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\sin xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \sin xdx=-cos x\end{matrix}\right.\)

\(\Rightarrow \int \sin x.e^xdx=-\cos x.e^x+\int \cos x.e^xdx+c\) (2)

Từ (1)(2) suy ra:

\(F(x)=e^x.\sin x+\cos x.e^x-\int \cos x.e^xdx+c\)

\(\Leftrightarrow F(x)=e^x\sin x+e^x\cos x-F(x)+c\)

\(\Leftrightarrow F(x)=\frac{1}{2}e^x(\sin x+\cos x)+c\)

Do đó: \(a=b=\frac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 8:13

Chọn A.

F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2017 lúc 7:54

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2017 lúc 11:11

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2018 lúc 5:20

Đáp án D

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
23 tháng 1 2016 lúc 10:59

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

Phạm Phương Anh
23 tháng 1 2016 lúc 11:07

oe

vvvvvvvv
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:24

Vì hai làm lượng giác \(y = \sin x,y = \cos x\) liên tục trên \(\mathbb{R}\)

\( \Rightarrow f\left( x \right) = \sin x + \cos x\) liên tục trên \(\mathbb{R}\)