Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Hồng Mai
Xem chi tiết
ĐẠO THU NGUYỆT HƯƠNG
Xem chi tiết
Nguyễn Huy Hoàng
9 tháng 3 2023 lúc 10:11

DE//CB

Theo định lí Ta-lét có:

\(\dfrac{AE}{EC}=\dfrac{AD}{DB}\\ \Rightarrow EC=\dfrac{AE.DB}{AD}\Rightarrow x=\dfrac{5.6}{4}=7,5\)

hoàng nguyễn phương thảo
Xem chi tiết
kudo shinichi
23 tháng 2 2020 lúc 23:08

x A y B D C E

cm:a) Ta có: \(\frac{AD}{BD}=\frac{11}{8}\)<=> \(\frac{AB+BD}{BD}=\frac{11}{8}\)

<=> \(\frac{AB}{BD}=\frac{11}{8}-1=\frac{3}{8}\)

\(AC=\frac{3}{8}CE\) <=> \(\frac{AC}{CE}=\frac{3}{8}\)

=> \(\frac{AB}{BD}=\frac{AC}{CE}=\frac{3}{8}\)

Theo định lí Ta - lét đảo => BC // DE

b) Do BC // DE, theo định lí Ta - lét, ta có:

\(\frac{AB}{AD}=\frac{BC}{DE}\) <=> \(DE=BC:\left(\frac{AD-BD}{AD}\right)=6:\left(1-\frac{8}{11}\right)=22\left(cm\right)\)
Vậy ....

Khách vãng lai đã xóa
Thu Thuỷ Nguyễn
Xem chi tiết
Tú
11 tháng 8 2019 lúc 18:18

a) \(P=\frac{3x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)

\(P=\frac{3\left(x-9\right)}{\left(x-3\right)\left(x-2\right)}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)

\(P=\frac{3}{x-2}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)

\(P=\frac{3\left(3-x\right)-\left(x+3\right)\left(3-x\right)-\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(3-x\right)}\)

\(P=\frac{9-3x-9+x^2-2x^2+4x-x+2}{\left(x-2\right)\left(3-x\right)}\)

\(P=\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}\) (*)

b) Thay \(x=-\frac{1}{2}\) vào (*) ta có:

\(P=\frac{2-\left(-\frac{1}{2}\right)^2}{\left[\left(-\frac{1}{2}\right)-2\right]\left[3-\left(-\frac{1}{2}\right)\right]}=\frac{2-\frac{1}{4}}{-\frac{5}{2}.\frac{7}{2}}=-\frac{\frac{7}{4}}{\frac{5}{2}.\frac{7}{2}}=-\frac{7}{35}=-\frac{1}{5}\)

c) \(\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}< 0\)

\(\Leftrightarrow2-x^2< 0\)

\(\Leftrightarrow-x^2< -2\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow\hept{\begin{cases}x< -\sqrt{2}\\-\sqrt{2}< x< \sqrt{2}\\x>2\end{cases}}\)

Vậy: ...

Hoàng Chi
Xem chi tiết
Võ Khánh Linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 9 2016 lúc 23:37

2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

Nữ Hoàng Toán Học
13 tháng 4 2017 lúc 21:52

Ui đau đầu quá !

bui thi thanh giang
22 tháng 4 2017 lúc 8:13

lang nha lang nhang cha hieu gi ca

Trung Nguyen
Xem chi tiết
Trung Nguyen
Xem chi tiết
Trung Nguyen
18 tháng 2 2018 lúc 20:39

Câu này mk xin sửa lại là AB+AC+DE2 nhé mn

Mai Linh
Xem chi tiết
Vũ Mun
11 tháng 6 2015 lúc 0:17

mình đc 4a à

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)

mà a/b+b/a>=2(BĐT cosi)

cmtt ta đc

3+2+2+2>=9

Vậy(a+b+c)(1/a+1/b+1/c)>=9