Cho h.vẽ:TRong đoa DC > DB.So sánh độ dài các cạnh AC và AB
cho tam giác ABC có AC > AB kẻ đường vuông góc AH từ A đến đường thẳng BC gọi D là điểm nằm giữa A và H a) so sánh độ dài các đoạn thẳng HC và HB b) so sánh các độ dài các đoạn thẳng DC và DB
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
Cho tam giác ABC vuông tại A, đường phân giác BD (D€AC). Trên cạnh BC lấy điểm E sao cho BE=AB
a, So sánh DA và DE
b, So sánh góc bDe và góc bCd
c, Chứng minh BD+DC nhỏ hơn AB+AC
d, Cho AB=6cm và AC=4/5 BC, tính độ dài AC
a) Xét \(\Delta ABD\)&\(\Delta EBD\)có:
BE = AB ( theo đầu bài)
\(\widehat{ABD}=\widehat{EBD}\)(vì BD là phân giác của góc ABC)
BD chung
=> \(\Delta ABD=\Delta EBD\)(c.g.c)
=> DA= DE ( 2 cạnh tương ứng )
Ta có: \(\widehat{BDA}+\widehat{BDA}=90^o\)(trong tam giác vuong 2 góc nhọn phụ nhau)
=>\(\widehat{BDA}< \widehat{BAD}\)(1)
Và có : \(\widehat{BDC}>\widehat{BAD}\)(tính chất góc ngoài của tam giác)(2)
Từ (1) vs (2) =>\(\widehat{BDC}>\widehat{BDA}\)
Mà:\(\widehat{BDA}=\widehat{BDE}\)
=>\(\widehat{BDC}>\widehat{BDE}\)
Cho tam giác ABC vuông tại A, đường phân giác BD( D thuộc AB) Trên cạnh BC lấy điểm E sao cho BE=AB
a) So sánh góc BDE và góc BCD
b)So sánh DA và DE
c)Chung minh BD+DC<AB+AC
d)Cho AB=6cm AC =4/5 BC. Tính độ dài AC
cho ∆abc vuông tại A tia phân giác của góc B cách AC tại D từ D kẻ DH vuông góc với BC ( H€ BC và DH cách AB tại K: a) chứng minh AD = BH : b) so sánh độ dài cạnh AD và DC :c) chứng minh tam giác KBC là ∆ cân ... Cần gấp ạ
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a. Chứng minh: AD = HD
b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
Cho tam giác ABC vuông tại A. Biết AC = 6cm, BC = 10cm, tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Tính độ dài đoạn AB
b) Chứng minh: AD = DH
c) So sánh độ dài hai cạnh AD và DC
d) Chứng minh tam giác KBC là tam giác cân
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
tam giác abc vuông tại A. tia phân giác của góc ABC cắt AC tại D, từ D kẻ DH vuông góc với HB tại H. gọi K là giao điểm của DH và AB
a, chứng minh: tam giác ABD = tam giácHBD, từ đó suy ra AD = HD
b, so sánh độ dài cạnh AD và DC
c, Biết HD = 5cm, HC = 12cm. tính độ dài cạnh dc?
Bài 5: Cho tam giác ABC vuông tại A, có AB = 9cm, BC = 15cm.
a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC.
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh: ΔBCD cân
c) Gọi E, F lần lượt là trungđiểm của các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M. Chứng minh: Ba điểm D, M, F thẳng hàng và tính độ dài đoạn thẳng CM
d) Trên cạnh DC lấy điểm H, trên tia đối của tia BC lấy điểm K sao cho DH = BK. Đường thẳng HK cắt cạnh BD tại N. Chứng minh NH = NK.
Các bạn giúp mình ý c vs d với
Làm theo chương trình lớp 7 kì 1 nhé