cho \(A=\dfrac{x^3-3x^2+0,25xy^2-4}{x^2+y}\) tính A biết \(x=\dfrac{1}{2}\) ; y là số nguyên âm lớn nhất
\(A=\dfrac{x^3-3x^2+0,25xy^2-4}{x^2+y} \)
Tính A biết \(x=\dfrac{1}{2}\); y là số nguyên âm lớn nhất
Vì ý là số nguyên âm lớn nhất
=> y = -1
Thay \(x=\frac{1}{2};y=-1\) vào A là ta có:
\(A=\frac{\left(\frac{1}{2}\right)^3-3.\left(\frac{1}{2}\right)^2+0,25.\frac{1}{2}.\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)
\(=\) \(\frac{\frac{1}{8}-3.\frac{1}{4}+0,25.\frac{1}{2}.1-4}{\frac{1}{4}+\left(-1\right)}\)
\(=\frac{\frac{1}{8}-\frac{3}{4}+\frac{1}{8}-4}{\frac{5}{4}}\)
\(=\frac{\frac{-9}{2}}{\frac{5}{4}}=\frac{-9}{2}.\frac{4}{5}=\frac{-36}{10}=\frac{-18}{5}=-3,6\)
Vậy \(A=-3,6\)
Cho A=\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\). Tính giá trị của A biết \(x=\frac{1}{2}\); y là số nguyên âm lớn nhất.
Cho các biểu thức
A = \(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{3}{x-2}\) và B = \(\dfrac{x+2}{3x+2}\)với x ≠ 2; x ≠ -2; x ≠ -\(\dfrac{2}{3}\)
a. Tính giá trị của A biết \(3x^2+8x+4=0\)
b. Rút gọn B
\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |
Cho biểu thức :
\(A=\frac{x^3-3x^2+0,25xy^2+4}{x^2+y}\)
Tính giá trị của A biết x=\(\frac{1}{2}\); y là số nguyên âm lớn nhất
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
Cho \(A=\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)
Tính giá trị của A nhanh nhất biết \(x=\frac{1}{2}\)và y là số nguyên âm lớn nhất
Cho các biểu thức sau
A = \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
B = \(\dfrac{x+1}{x^2+3x+2}\)
a. Rút gọn A, B
b. tính giá trị của A biết x2 + x = 0
Tính giá trị của B biết x2 + 2x = 0
\(a,ĐK:x\ne\pm2\\ A=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\\ ĐK:x\ne-1;x\ne-2\\ B=\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ b,x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \forall x=0\Leftrightarrow A=\dfrac{1}{0-2}=-\dfrac{1}{2}\\ \forall x=-1\Leftrightarrow A=\dfrac{1}{-1-2}=-\dfrac{1}{3}\)
\(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ \Leftrightarrow B=\dfrac{1}{0+2}=\dfrac{1}{2}\)
Bài 1: Cho \(y=\dfrac{1}{3}x^3-2x^2+3x\). Viết phương trình tiếp tuyến của (C) đi qua A(\(\dfrac{4}{9};\dfrac{4}{3}\))
Bài 2: Cho \(y=\dfrac{1}{2}x^4-3x^2+\dfrac{3}{2}\) (C). Viết phương trình tiếp tuyến của (C) đi qua A(\(0;\dfrac{3}{2}\))