Cho tam giác ABC có điểm M nằm ngoài sao cho AM=BC,CM=AB
Chứng minh AM//BC,CM//AB
Cho tam giác ABC cân tại A (AB<BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx//AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên Bx lấy điểm N sao cho BN=CM. Chứng minh: Tam giác AMN cân
Sorry bn mk chua hoc tg cân nên ko bt giai nhug hih mk bt ve
ko bt co dug o nhe!
sai đề rùi
cân tại A → AB=AC rùi còn j nữa
thấy đugs thì tick nha
Cho tam giác ABC cân tại A(AB>BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx// AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a) Tam giác ABN= tam giác ACM;
b) Tam giác AMN cân;
cíu em với mấy anh chị ơiiiiiiiiiiiiiiiiiiiiiiiiiii
a: Xét ΔABN và ΔACM có
AB=AC
góc ABN=góc ACM
BN=CM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>AM=AN
=>ΔAMN cân tại A
Cho tam giác ABC cân tại A (AB > BC). Trên tia BC lấy điểm M sao cho MA = MB. Vẽ Bx // AM (Bx và AM cùng nằm trong nửa mp bờ AB). Trên tia Bx lấy điểm N sao cho BN = CM. Chứng minh : a) ABN = ACM b) tam giác AMN cân
bn tham khảo nha:
https://olm.vn/hoi-dap/detail/6244183766.html
Cho tam giác ABC có AB=AC và AB>BC. Trên tia BC, lấy điểm M sao cho MC=MB. Vẽ tia Bx//AM (Bx và Am cùng nằm trong nửa mặt phẳng MBA). Trên tia Bx lấy điểm N sao cho BN+CM
a) Chứng minh góc ABN=góc ACM
b) So sánh AM và AN
Cho tam giác ABC vuông tại A. M là trung điểm của BC. Trên tia AM lấy điểm n sao cho M là trung điểm của AN. Chứng minh: a. CN - AB, CM // AB b. Am = 1/2 BC.
Cho tam giác ABC có AB=AC. Gọi D và E là 2 điểm nằm trên cạnh BC sao cho DE=EC=BD. Biết AD=AEa, Cm: Góc EAB= Góc DAC.b, Gọi M là trung điểm của BC. Cm AM là tia phân giác của góc DAE.
a) Chứng minh góc EAB = góc DAC
b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE
c) Chứng minh AM⊥ BC.
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
C , .....
cho tam giác ABC cân tại A (AB>BC) . Trên tia BC lấy điểm M sao cho MA=MB . Vẽ tia Bx song song với AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a, Góc ABN=Góc ACM
b, Tam giác AMN cân
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A
Cho tam giác ABC có AB=3 cm ; AC= 4,5 cm. Lấy điểm M trên cạnh AB sao cho AM = 1 cm , lấy điểm N trên cạnh AC sao cho AN = 1,5 cm.
a) Chứng minh rằng MN // BC.
b) Gọi I là trung điểm của MN , tia AI cắt BC tại K.
+) CM \(\dfrac{MI}{BK}\)= \(\dfrac{AI}{AK}\)
+) CM K là trung điểm của BC .
c) CM IK , MK và BN đồng quy tại một điểm .
tự vẽ hình
a, có AM/AB=1/3
mà AN/AC=1,5/4,5=1/3
=> AM/AB=AN/AC
=> MN//BC
b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC
=> <AMN= <ABC
Xét tam giác AMI và tam giác ABK
<AMI= <ABC (cmt)
<MAK chung
=> tam giác AMI đồng dạng tam giác ABK
MI/BK= AI/AK
Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Tính dộ dài BC.
b) Chứng minh AB = CD, AB // CD.
c) Chứng minh góc BAM > góc CAM.
a, áp dụng định lí pytago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+4^2=25\)
\(BC=\sqrt{25}=5\)
B, xét tam giác BAC và DCA có:
BM=MC
AM=MD
góc BMA= DMC (đối đỉnh)
=> Tam giác BAC=DCA
=>BA=DC
Góc BAM=MDC=>BA//DC(so le trong)
cho mk xin **** nah