Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn lan hương
Xem chi tiết
Nguyễn Ngọc Quý
6 tháng 1 2016 lúc 20:42

Trong S1 có các số chia hết cho các thừa số ở S2

< = > S1 chia hết cho S2

=> ĐPCM 

phan van co 4
Xem chi tiết
Hoàng Nguyễn Xuân Dương
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

jimmydozen
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Nguyen Quynh Tram
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

Ngô Thị Diệu Linh
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 21:12

b, 2x+3y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17   hay 26x+39y chia hết cho 17

Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17

=> ĐPCM

k mk nha

Dũng Lê Trí
30 tháng 11 2017 lúc 21:15

b) Ta có : 2x+3y chia hết cho 17

=> 9(2x+3y) chia hết cho 17

=> 18x+27y chia hết cho 17 

Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17 

=> 2(9x+5y) chia hết cho 17

18x+10y chia hết cho 17

=> (18x+27y)-(18x+10y) = 17y chia hết cho 17

Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17

<=> 9x+5y chia hết cho 17

Phạm Tuấn Đạt
30 tháng 11 2017 lúc 21:22

b) Ta có : 2x+3y chia hết cho 17

=> 9(2x+3y) chia hết cho 17

=> 18x+27y chia hết cho 17 

Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17 

=> 2(9x+5y) chia hết cho 17

18x+10y chia hết cho 17

=> (18x+27y)-(18x+10y) = 17y chia hết cho 17

Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17

<=> 9x+5y chia hết cho 17

Huyền Đoàn
Xem chi tiết
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2020 lúc 7:20

a/ Do \(x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2

Mà 1 ko chia hết cho 2 \(\Rightarrow x\left(x+1\right)+1\) ko chia hết cho 2

b/ \(x^2+x+1=x\left(x+1\right)+1\) giống hệt câu a

c/ Do 3 chia hết cho 3 nên \(3\left(x^2+2x\right)\) chia hết cho 3

Mà 1 ko chia hết cho 3 \(\Rightarrow3\left(x^2+2x\right)+1\) ko chia hết cho 3

d/ \(3x^2+6x+1=3\left(x^2+2x\right)+1\) giống hệt câu c

Khách vãng lai đã xóa
nguyen cong duy
Xem chi tiết
Nguyễn Mạnh Tuấn
29 tháng 3 2016 lúc 17:29

S= (1999+1999^2+1999^3 +....+1999^1998)

=(1999+1999^2)+(1999^3+1999^4)+...+(1999^1997+1999^1998)

=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)

=1999.2000+1999^3.2000+...+1999^1997.2000

=2000(1999+1999^3+...+1999^1997) CHIA HET CHO 2000

Vậy S chia het cho 2000(đpcm)

yunaaaa
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 22:50

\(=x^3\left(x+2\right)-x\left(x+2\right)\)

\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)

Vì đây là tích của bốn số nguyên liên tiếp

nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)

Đoàn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 9:34

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

Đào An Nguyên
Xem chi tiết
Nguyễn Tuấn Tài
13 tháng 7 2015 lúc 11:06

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>   (đpcm)

mình tự làm ko copy trong tưng tự 

Nguyen Dung
29 tháng 11 2016 lúc 20:20

Gọi  (1999+19992+19993+...+19991998) = S

Tổng S có : (1998-1)/1+1=1998 (số hạng)

Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)

Ta có : S=1999+19992+19993+...+19991998

Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)

Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)

Suy ra:S=1999.2000+19993.2000+...+19991997.2000

Suy ra:S=2000.(1999+19993+...+19991997)

Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000

Vậy (1999+19992+19993+...+19991998) chia hết cho 2000