4. chứng tỏ rằng : 3 mũ 0+ 3 mũ 1+ 3 mũ 2+ 3 mũ 3 ..............+ 3 mũ 11 chia hết cho 40
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
Cho C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .... + 3 mũ 11 .Chứng tỏ rằng C chia hết cho 40.
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(C=\left(1+3+3^2+3^3\right).\left(1+3^4+3^8\right)\)
\(C=40.\left(1+3^4+3^8\right)\)
Vậy \(C⋮40\)
sửa đề là cho \(C=1+3+3^2+3^3+...+3^{11}\)
Ta có: \(C=1+3+3^2+3^3+3^4+...+3^{11}\)
\(C=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(C=4+3^2.4+3^4.4+3^6.4+...+3^{10}.4\)
\(C=4\left(1+3^2+3^4+3^6+3^8+3^{10}\right)⋮4\left(ĐPCM\right)\)
VẬy C chia hết cho 4
Ta có: C=(\(1+3+3^2+3^3\))+.......+\(\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40+.....+3^8\left(1+3+3^2+3^3\right)\)
\(=40\left(3^4+...+3^8\right)\)
Vậy \(C\)chia hết cho 40(Vì có chứa thừa số 40)
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
Cho C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .... + 3 mũ 11 .Chứng tỏ rằng C chia hết cho 4
\(C=1+3+3^2+3^3+...+3^{11}\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(C=4+3^2.\left(1+3\right)+...+3^{10}.\left(1+3\right)\)
\(C=4+3^2.4+...+3^{10}.4\)
\(C=4.\left(1+3^2+...+3^{10}\right)\)
Vif \(4⋮4=>C⋮4\)
\(C=1+3+3^2+3^3+...+3^{11}\\ =\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\\ =\left(1+3\right)\left(1+3^2+....+3^{10}\right)\\ =4\left(1+3^2+....+3^{10}\right)⋮4\)
\(=>C⋮4\)
C=1+3+32+33+...+311C=1+3+32+33+...+311
C=(1+3)+(32+33)+...+(310+311)C=(1+3)+(32+33)+...+(310+311)
C=4+32.(1+3)+...+310.(1+3)C=4+32.(1+3)+...+310.(1+3)
C=4+32.4+...+310.4C=4+32.4+...+310.4
C=4.(1+32+...+310)C=4.(1+32+...+310)
Vif 4⋮4=>C⋮4
Cho C = 3 mũ 10, 3 mũ 11, 3 mũ 12, ... , 3 mũ 17.
Chứng tỏ rằng: C chia hết cho 40
Chứng tỏ rằng rằng:(3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + .... + 3 mũ 2009 + 3 mũ 2010) chia hết cho 13
(31 + 32 +33 ) + (34 + 35 +36 ) + ... + (32008 + 32009 + 32010 )
= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )
= 13 ( 3 + 34 + ... + 32008 ) chia hết cho 13
Cho A = 2 mũ 0 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + ....+2 mũ 99 .
Chứng tỏ rằng tổng A chia hết cho 3
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
cho A=4 mũ 0+4 mũ 1+4 mũ 2+4 mũ 3+........+4 mũ 97.Chứng tỏ rằng A chia hết cho 85
a. chứng tỏ rằng : A = 1+ 2 +2 mũ 3 + 2 mũ 4 + ........+ 2 mũ 29 chia hết cho 7
b. chứng tỏ rằng : A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 90 chia hết cho 21
Tôi tên là Ngọc Anh . Năm nay Tôi 11 tuổi. Tôi không biết bài này