\(C=1+3+3^2+3^3+...+3^{11}\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(C=4+3^2.\left(1+3\right)+...+3^{10}.\left(1+3\right)\)
\(C=4+3^2.4+...+3^{10}.4\)
\(C=4.\left(1+3^2+...+3^{10}\right)\)
Vif \(4⋮4=>C⋮4\)
\(C=1+3+3^2+3^3+...+3^{11}\\ =\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\\ =\left(1+3\right)\left(1+3^2+....+3^{10}\right)\\ =4\left(1+3^2+....+3^{10}\right)⋮4\)
\(=>C⋮4\)
C=1+3+32+33+...+311C=1+3+32+33+...+311
C=(1+3)+(32+33)+...+(310+311)C=(1+3)+(32+33)+...+(310+311)
C=4+32.(1+3)+...+310.(1+3)C=4+32.(1+3)+...+310.(1+3)
C=4+32.4+...+310.4C=4+32.4+...+310.4
C=4.(1+32+...+310)C=4.(1+32+...+310)
Vif 4⋮4=>C⋮4