Giúp vs ạ (a^2+2a+4)(a-4)
Điền vào chỗ các dấu * để được đẳng thức đúng
a, 36 x^3y^4-*=*(4x^2y-2y^3)
b,-2a^3b(4ab^2+*)=*+a^5b^2
giúp vs ạ
a. \(\dfrac{sina+sin3a+sin5a}{cosa+cos3a+cos5a}\)= tan3a
b. \(\dfrac{1+cosa}{1-cosa}tan^2\dfrac{a}{2}-cos^2a=sin^2a\)
giúp mk vs ạ
a.
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
b.
\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)
\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)
rút gọn: a) 6x^2 - 8xy / 9xy - 12y^2 b) 2a^3 - 18a / a^4 - 81 MN GIÚP MIK VS MIK ĐAG CẦN GẤP
a) Ta có: \(\dfrac{6x^2-8xy}{9xy-12y^2}\)
\(=\dfrac{2x\left(3x-4y\right)}{3y\left(3x-4y\right)}=\dfrac{2x}{3y}\)
b) \(\dfrac{2a^3-18a}{a^4-81}\)
\(=\dfrac{2a\left(a^2-9\right)}{\left(a^2-9\right)\left(a^2+9\right)}=\dfrac{2a}{a^2+9}\)
Bài 2 : Phân tích các đa thức thành nhân tử :
a, x^4 - 2x^3 + 2x - 1
b, a^6 - a^4 + 2a^3 + 2a^2
c, x^4 + x^3 + 2x^2 + x + 1
d, x^4 + 2x^3 + 2x^2 + 2x + 1
e, x^2y + xy^2 + x^2z + y^2z + 2xyz
f, x^5 + x^4 + x^3 + x^2 + x + 1
Giúp mk vs ạ mk cần gấp ạ
a)
$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$
$=(x^2-x)^2-(x-1)^2$
$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$
$=(x-1)^3(x+1)$
b)
$a^6-a^4+2a^3+2a^2$
$=a^4(a^2-1)+2a^2(a+1)$
$=a^4(a-1)(a+1)+2a^2(a+1)$
$=(a+1)[a^4(a-1)+2a^2]$
$=a^2(a+1)[a^2(a-1)+2]$
$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$
$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$
$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$
c)
$x^4+x^3+2x^2+x+1$
$=(x^4+2x^2+1)+(x^3+x)$
$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$
d)
$x^4+2x^3+2x^2+2x+1$
$=(x^4+2x^3+x^2)+(x^2+2x+1)$
$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$
$=(x+1)^2(x^2+1)$
e)
$x^2y+xy^2+x^2z+y^2z+2xyz$
$=xy(x+y)+z(x^2+y^2)+2xyz$
$=xy(x+y)+z(x^2+y^2+2xy)$
$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$
f)
$x^5+x^4+x^3+x^2+x+1$
$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$
$=(x+1)(x^4+x^2+1)$
$=(x+1)[(x^4+2x^2+1)-x^2]$
$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$
\(\sqrt{a^3+a^2+4}+\sqrt{a^3+a^2-3}=7\)
giúp mik vs ạ
ĐKXĐ: \(a^3+a^2-3\ge0\) (1)
Đặt \(\sqrt{a^3+a^2-3}=x\ge0\Rightarrow a^3+a^2+4=x^2+7\)
Phương trình trở thành:
\(\sqrt{x^2+7}+x=7\)
\(\Leftrightarrow\sqrt{x^2+7}=7-x\) (\(x\le7\))
\(\Leftrightarrow x^2+7=x^2-14x+49\)
\(\Rightarrow14x=42\)
\(\Rightarrow x=3\)
\(\Rightarrow a^3+a^2-3=9\)
\(\Rightarrow a^3+a^2-12=0\)
\(\Rightarrow\left(a-2\right)\left(a^2+3a+6\right)=0\)
\(\Rightarrow a=2\) (thỏa mãn (1))
Tìm A biết (x-3)(2-3x)-x+2A-4=5A+1
Giúp mik vs! Cần gấp lắm ~~~
Tìm A biết (x-3)(2-3x)-x+2A-4=5A+1
Giúp mik vs. Cần gấp lắm!
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
\(-|2a+4|-2=x\)
Với x có giá trị lớn nhất
Giúp mk vs ạ ><
dạng toán này đơn giản nhất, chỉ cần hiểu rõ giá trị tuyệt đối không âm,
GTLN x = -2