tìm min K= \(\left|x^2+x+16\right|+\left|x^2+x-6\right|\)
Tìm Min \(T=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Tìm min của \(\left|x^2+x+16\right|+\left|x^2+x-6\right|\)
\(A=\left|x^2+x+16\right|+\left|x^2+x-6\right|=\left|x^2+x+16\right|+\left|6-x^2-x\right|\)
\(\ge\left|x^2+x+16+6-x^2-x\right|=22\)
\(\Rightarrow Min_A=22\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x^2+x+16\right)\left(6-x^2-x\right)\ge0\)
Vì \(x^2+x+16>0\) => \(6-x^2-x\ge0\Leftrightarrow x^2+x-6\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\le0\)
\(\Leftrightarrow2\ge x\ge-3\)
Tìm MIN:
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
a) Tìm min \(P=2x^2-8x+1\)
b) Tìm max \(Q=-5x^2-4x+1\)
c) Tìm min \(K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
d) Tìm min \(R=\frac{3x^2-8x+6}{x^2-2x+1}\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
tìm min P=\(\sqrt{\left(6-x\right)\left(x+2\right)}-\sqrt{\left(3-x\right)\left(x+1\right)}\)
TÌM MIN A = \(\sqrt{\left(6-X\right)\left(X+2\right)}+\sqrt{\left(3-X\right)\left(X+1\right)}\)
Tìm min \(Y=\left|x^2+x+2016\right|+\left|x^2+x-6\right|\)
Áp dụng bất đẳng thức !aI+!b!>=!a+b! đẳng thức khi a và b trái dấu
\(y\ge!\left(x^2+x+2016\right)-\left(x^2+x-6\right)!=2022\)
đẳng thức khi
x^2+x+2016>0 hển nhiên
(x^2+x-6)<0 khi
\(-3\le0\le2\)
Tìm Min A, biết \(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Đặt a = x - 2 => x - 1 = a + 1; x - 3 = a -1
Khi đó, A = (a+1)4 + (a - 1)4 + 6.(a + 1)2 .(a - 1)2
A = [(a + 1)2 + (a - 1)2]2 + 4.(a + 1)2 .(a - 1)2
= (a2 + 2a + 1 + a2 - 2a + 1)2 + 4.(a2 - 1)2
= (2a2 +2)2 + 4.(a4 - 2a2 + 1)
= 4a4 + 8a2 + 4 + 4a4 - 8a2 + 4 = 8a4 + 8 \(\ge\) 8 với mọi a
=> min A = 8 khi a = 0 <=> x - 2 = 0 <=> x= 2
Cho x;y ≥ 0
Tìm Min P = \(x^2+y^2+\frac{16}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
Ta có: x2+1≥(x+1)2/2, y2+1≥(y+1)2
P+2≥ \(\frac{\left(x+1\right)^2}{2}+\frac{\left(y+1\right)^2}{2}+4.\frac{4}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
Theo bđt Cosy ta có
P+2≥\(\frac{\left(x+1\right)^2.\left(y+1\right)^2.4^4}{2.2.\left(x+1\right)^2.\left(y+1\right)^2}\)=4^3=64.
=>P≥62
Vậy GTNN của P là 62 tại x=y=1.
(Chú ý điều kiện x,y≥0)