Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\).
giải pt:
a. \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b, \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
1, \(\left\{{}\begin{matrix}x^3+2y^2-4y+29=0\\x^2+x^2y^2-18y=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+2y^2-4y+10=0\\x^2+x^2y^2-16y+12=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x,y>0\\x+y=7\\\dfrac{9}{x}+\dfrac{16}{y}=7\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}x,y>0\\x+y=4\\\dfrac{4}{x}+\dfrac{9}{y}\le4\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}x^3+y^2=\dfrac{211}{27}\\x^2+y^2+xy-3x-4y+4=0\end{matrix}\right.\)
6, \(\left\{{}\begin{matrix}x^4+81y^2=697\\x^2+9y^2+3xy-9x-36y+36=0\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^6-y^6=1\\\left|x+y\right|+\left|x-y\right|=2\end{matrix}\right.\)
Nghiệm nguyên dương của hệ phương trình \(\left\{{}\begin{matrix}y^2=\left(x+8\right)\left(x^2+2\right)\\16x-8y+16=5x^2+4xy-y^2\end{matrix}\right.\)là...
Giải phương trình: \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\).
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}4x+y=-5\\3x-2y=-12\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)-11\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}2\left(x+3\right)=3\left(y+1\right)+1\\3\left(x-y+1\right)=2\left(x-2\right)+3\end{matrix}\right.\).
1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)
2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)
3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)
4/ Cho x,y là nghiệm của hệ phương trình
\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)
Tìm min và max của A=xy
5/cho x,y,z thỏa mãn đk
\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)
Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)
9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)
10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)
11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)
12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)
13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:
a)\(\left(x^2-3\right)^2-x-3=0\)
b)\(x^2-2=\sqrt{x+2}\)
14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)