Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rita Hương Rika
Xem chi tiết
Phùng Khánh Linh
18 tháng 12 2017 lúc 17:56

3x2 - 6x + 4

= 3( x2 - 2x + 1) + 1

= 3( x - 1)2 + 1

Do : 3( x - 1)2 lớn hơn hoặc bằng 0 với mọi x thuộc R

=> 3( x - 1)2 + 1 > 0 với mọi x thuộc R

Vũ Thị Thùy An
Xem chi tiết
Le Thi Khanh Huyen
14 tháng 12 2016 lúc 17:34

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...

Nguyễn Huyền Ngọc
Xem chi tiết
Lê Minh Tú
9 tháng 12 2017 lúc 14:13

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)

\(\RightarrowĐPCM\)

Nguyễn Huyền Ngọc
9 tháng 12 2017 lúc 14:01

Mọi ng giúp em

Nguyễn Đức Quốc Khánh
Xem chi tiết
Yukru
20 tháng 8 2018 lúc 13:20

a) Ta có:

\(x^2+2xy+y^2+1\)

\(=\left(x+y\right)^2+1\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x+y\right)^2+1\ge1\)

\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x

b) Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Thu Đào
Xem chi tiết
Nguyễn Đức Trí
8 tháng 8 2023 lúc 14:14

 \(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề

Trịnh Thành Long
8 tháng 8 2023 lúc 14:16

Bạn xem lại đề nha nhìn là biết sai rồi

Nguyễn Đức Trí
8 tháng 8 2023 lúc 14:17

Câu C cũng xem lại đề

 

Lê Hải
Xem chi tiết
vũ tiền châu
2 tháng 1 2018 lúc 21:01

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

Hoàng Đức Khải
2 tháng 1 2018 lúc 21:09

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-12x+12y-10y+5y^2+2017\)

\(Q=\left(x-y\right)^2-2.6\left(x-y\right)+36+\left(5y^2-10y+5\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

\(\left(x-y-6\right)^2;5\left(y-1\right)^2\ge0\)

\(Q>0\forall x;y\in R\)(đpcm)

Trang Le
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
3 tháng 4 2020 lúc 18:22

Viết lại đề câu a)

Câu b)

\(A=4x^2+4x+15\)

\(=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy : Min \(A=14\Leftrightarrow x=-\frac{1}{2}\)

Khách vãng lai đã xóa
Trần Thùy Linh
3 tháng 4 2020 lúc 18:22

\(x^2-3x+7=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)

Ta có \(A=4x^2+4x+15=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(x=\frac{-1}{2}\)

Vậy Min \(A=14\Leftrightarrow x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
3 tháng 4 2020 lúc 18:25

a, Ta có : \(x^2-3x+7\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)

Ta thấy \(\left(x-\frac{3}{2}\right)^2\ge0\)

=> \(\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

\(\frac{19}{4}>0\)

=> \(\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\) với mọi x .

=> \(x^2-3x+7>0\forall x\)

b, Ta có : \(A=4x^2+4x+15\)

=> \(A=\left(2x+1\right)^2+14\)

Ta thấy : \(\left(2x+1\right)^2\ge0\)

=> \(\left(2x+1\right)^2+14\ge14\)

Vậy MinA = 14 khi 2x + 1 = 0 <=> \(x=-\frac{1}{2}\)

Khách vãng lai đã xóa
HOPE
Xem chi tiết
HOPE
23 tháng 12 2018 lúc 10:44

mọi người giúp mình với

Nguyệt
23 tháng 12 2018 lúc 11:11

\(A=x^2-4^2-\left(x+3\right).\left(-2x+x+3\right)=x^2-4^2-\left(x+3\right).\left(-x+3\right)\)

\(=x^2-16+9-x^2=-7\)

=> đpcm

Kudo Sinichi
Xem chi tiết
Nguyễn Linh Chi
20 tháng 11 2019 lúc 15:45

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Khách vãng lai đã xóa

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

Khách vãng lai đã xóa