C= ( x + 1 )^2 - ( 2 x - 1 ) + 3( x - 2 ) ( x + 2 )
a, 2.x.(x-1)^2-3.x.(x+3).(x-3)-4.x.(x+1)^2
b,(a-b+c)^2-(b-c)^2+2.a.b-2.a.c
c,(3.x+1)^2-2.(1+3.x).(3.x+5)+(3.x+5)^2
d, (3+1).(3^2+1).(3^4+1).(3^8+1).(3^16+1).(3^32+1)
e, (a+b-c)^2+(a-b+c)^2+(b-c-a)^2+(c-a-b)^2
1.Tìm x
a) (x - 5)(x + 5) - (x + 3)^2 + 3 (x - 2)^2 = (x + 1)^2 - (x + 4)(x - 4) +3x^2
b) (2x + 3)^2 + (x - 1)(x + 1) = 5 (x + 2)^2 - (x - 5)(x + 1) + (x + 4)^2
c) (-x + 5)(x - 2) + (x - 7)(x + 7) = (3x + 1)^2 - (3x - 2)(3x + 2)
d) (5x - 1)(x + 1) - 2(x - 3)^2 = (x + 2)(3x - 1) - (x + 4)^2 + (x^2 - x)
2.Rút gọn :
a) A= 3 (x - 1)^2 - (x + 1)^2 + 2(x - 3)(x + 3) - (2x + 3)^2 - (5 - 20x)
b) B= 5x (x - 7)(x + 7) - x (2x - 1)^2 - (x^3 + 4x^2 - 246x) - 175
c) C = -2x (3x + 2)^2 + (4x + 1)^2 + 2 (x^3 + 8x + 3x - 2 ) - (5 - x)
Quy đồng mẫu các phân thức:
1) 7x-1/2x^2+6x; 3-2x/x^2-9
2) 2x-1/x-x^2; x+1/2-4x+2x^2
3) x-1/x^3+1; 2x/x^2-x+1; 2/x+1
4) 7/5x; 4/x-2y; x-y/8y^2-2x^2
5) x/x^3-1; x+1/x^2-x; x-1/x^2+x+1
6) x/x^2-2ax+a^2; x+a/x^2-ax
1)
\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)
\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)
MTC: \(x\left(x-3\right)\left(x+3\right)\)
\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)
2)
\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)
\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)
MTC: \(2x\left(1-x\right)^2\)
\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)
\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)
Phần còn lại nhé :v
3.
\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
\(x^2-x+1=x^2-x+1\)
\(x+1=x+1\)
MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)
\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
4.
\(5x\)
\(x-2y=x-2y=-\left(2y-x\right)\)
\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)
MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)
\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)
5.
\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(x^2-x=x\left(x-1\right)\)
\(x^2+x+1\)
MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)
\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
6.
\(x^2-2ax+a^2=\left(x-a\right)^2\)
\(x^2-ax=x\left(x-a\right)\)
MTC: \(x\left(x-a\right)^2\)
\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)
\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)
các bạn ơi giải giúp mình cáu câu hỏi phương trình chứa ẩn ở mẩu
A)1/x-1 + 2/x+1 =x/x^2-1
B)2/x+1 - 1/x-1 = 3/x-7
C) x/2(x-3) + x/2(x+1) = 2x/(x+1)(x-3)
D)5 + 76/x^2-16 = 2x-1/x+4 - 3x-1/4-x
E )x/x-2 - x/x+2 =5/x^2-4
F) x/x-1 + x+1/x^2+x+1 = x(x^2 +3) -1/X^3-1
giải gium nhé
a) \(\frac{1}{x-1}\)+\(\frac{2}{x+1}\)=\(\frac{x}{x^2-1}\) (ĐKXĐ:x≠1;x≠-1)
⇔\(\frac{x+1}{\left(x-1\right)\left(x+1\right)}\)+\(\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)=\(\frac{x}{\left(x-1\right)\left(x+1\right)}\)
⇒x+1+2x-2=x
⇔2x-1=0
⇔x=\(\frac{1}{2}\) (TMĐKXĐ)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{1}{2}\)}
những cách làm câu còn lại chẳng khác gì cách làm của câu này, bạn tự làm được mà!
a, (3x+2)2 - (3x-2)2 =5x+38 b, 3(x-2)2 +9(x-1) =3(x2+x-3)
c, (x+3)3 -(x-3)2 -(x-3)2 =6x+18 d, (x-1)3-x(x+1)2=5x(2-x)-11(x+2)
e, (x+1)(x2-x+1)-2x=x(x-1)(x+1) f, (x-2)3+(3x-1)(3x+1)=(x+1)3
a: =>9x^2+12x+4-9x^2+12x-4=5x+38
=>24x=5x+38
=>19x=38
=>x=2
e: =>x^3+1-2x=x^3-x
=>-2x+1=-x
=>-x=-1
=>x=1
f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1
=>12x-9=3x+1
=>9x=10
=>x=10/9
b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
=>-3x+3=3x-9
=>-6x=-12
=>x=2
rút gọn các bt sau:
(x-8)(x^2-2x+9)+(x+1)^3
(2x-1)^2-3(x-1)(x+2)-(x-3)^2
2(x+2)(x-2)+(x+3)(2x-1)
(x-2)(2x-1)-3(x+1)^2-4x(x+2)
a, \(\left(x-3\right)\left(x^2-2x+9\right)+\left(x+1\right)^3\)
\(=x^3-3x^2-2x^2+6x+9x-27+x^3+3x^2+3x+1\)
\(=2x^3-2x^2+18x-26\)
tìm x: part 1 : a,(x^3)^2-(x+1)(x-1)=1 b,(x-2)^2-3(x-2)=0 c,(x+2)(x^2-2x+4)-x(x^2+2)=15 d,(x+1)^2-(x+1)(x-2)=0 e,4x(x-2017)-x+2017=0 f,(x+4)^2-16=0 part 2: a,x^3+27+(x+3)(x-9)=0 b,(2x-1)^2-4x^2+1=0 c,2(x-3)+x^2-3x=0 d,x^2-2x+1=6x-6 e,x^3-9x=0
Bài 1:Tìm x,biết:
a,(x-2)(x+2)-(x-3)\(^2\)=9
b,(x-1)(x\(^2\)+1)-(x+1)(x\(^2\)-x+1)=x(2-x)
c,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
d,(x+1)\(^3\)-(x-1)\(^{^{ }3}\)-6(x-1)\(^2\)=-19
Bài 2:Viết về dạng bình phương hoặc dạng tích:
a,\(\dfrac{1}{27}\)x\(^3\)+x\(^2\)+9x+27
b,8u\(^3\)-60u\(^2\)v+150uv\(^2\)-125v\(^3\)
c,x^3+3x^2+3x+1+3(x^2+2x+1)y+3xy^2+3y^3+y^3
a. (x - 2)(x + 2) - (x - 3)2 = 9
<=> x2 - 22 - (x - 3)2 = 32
<=> x - 2 - (x - 3) = 3
<=> x - 2 - x + 3 = 3
<=> x - x = 3 - 3 + 2
<=> 0 = 2 (Vô lí)
Vậy nghiệm của PT là S = \(\varnothing\)
b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)
\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)
\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)
\(\Leftrightarrow-x=2\)
hay x=-2
1.Rút gọn các biểu thức
a.(2x+1) mũ 2-4x(x.5)
b)(x+3)mũ 2 - (x+1)(x-1)
c)(x-5)mũ 2 - (x+2)mũ 2
d)(x+3)mũ 2 - (x-3)mũ 2
e)2x(x+1)-(x+3)mũ 2-x mũ 2
g)(x+3)mũ 2+(x+2)mũ 2-2(x+3)(x+2)
Câu a :
\(\left(2x+1\right)^2-4x\left(x-5\right)\)
\(=4x^2+4x+1-4x^2+20\)
\(=4x+19\)
Câu b :
\(\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-1\)
\(=6x-8\)
Câu c :
\(\left(x-5\right)^2-\left(x+2\right)^2\)
\(=\left(x-5-x-2\right)\left(x-5+x+2\right)\)
\(=-7\left(2x-3\right)\)
\(\text{b) }\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\\ =\left(x+3\right)^2-\left(x^2-1^2\right)\\ =x^2+2\cdot x\cdot3+3^2-x^2+1\\ =\left(x^2-x^2\right)+6x+\left(9+1\right)\\ =6x+10\\ \)
\(\text{c) }\left(x-5\right)^2-\left(x+2\right)^2\\ =\left(x^2-2\cdot x\cdot5+5^2\right)-\left(x^2+2\cdot x\cdot2+2^2\right)\\ =x^2-10x+25-x^2-4x-4\\ =\left(x^2-x^2\right)-\left(10x+4x\right)+\left(25-4\right)\\ =-14x+21\\ \)
\(\text{d) }\left(x+3\right)^2-\left(x-3\right)^2\\ =\left(x^2+2\cdot x\cdot3+3^2\right)-\left(x^2-2\cdot x\cdot3+3^2\right)\\ =x^2+6x+9-x^2+6x-9\\ =\left(x^2-x^2\right)+\left(6x+6x\right)+\left(9-9\right)\\ =12x\\ \)
\(\text{e) }2x\left(x+1\right)-\left(x+3\right)^2-x^2\\ =2x^2+2x-\left(x^2+2\cdot x\cdot3+3^2\right)-x^2\\ =2x^2+2x-x^2-6x-9-x^2\\ =\left(2x^2-x^2-x^2\right)+\left(2x-6x\right)-9\\ =-4x-9\\ \)
\(\text{g) }\left(x+3\right)^2+\left(x+2\right)^2-2\left(x+3\right)\left(x+2\right)\\ =\left[\left(x+3\right)-\left(x+2\right)\right]^2\\ =\left(x+3-x-2\right)^2\\ =1^2\\ =1\\ \)
Giải các phương trình sau bằng cách đưa về dạng ax + b = 0 :
1. a) 5 - (x - 6) = 4(3 - 2x)
b) 2x(x + 2)^2 - 8x^2 = 2(x - 2)( x^2 + 2x + 4)
c) 7 - (2x + 4) = - (x + 4)
d) (x - 2)^3 + (3x - 1)(3x + 1) = (x + 1)^3
e) (x + 1)(2x - 3) = (2x - 1)(x + 5)
f) (x - 1)^3 - x(x + 1)^2 = 5x(2 - x ) - 11(x +2)
g) (x-1) - (2x - 1 ) = 9 - x
h) (x-3)(x+4) - 2(3x - 2) = (x-4)^2
i) x(x+3)^2 - 3x = (x + 2)^3 + 1
j) (x + 1)(x^2 - x + 1) - 2x = x(x + 1)(x-1)
a) 5-(x-6)=4(3-2x)
<=>5-x+6-12+8x=0
<=>7x-1=0
=>x=1/7