|2x-1|+|1-2x|=8
A=(x ² - 2x/ 2x ² +8 +2x ²/x ³ -2x ² -4x-8) × (1-1/2-2/x ²) a.rút gọn
Tìm x, biết
a)(2x-1)^5-(2x-1)^8=0
b)(2x+1). (2x-3)<0
c)(x-1). (2x+3)>0
1) √(2x-1) <= 8-2x
2) √[(x+1)(4-x)] > x-2
3) √(x-2x^2+1) > 1-x
4) √(x+5) - √(x+4) > √(x+3)
5) √(5x-1) - √(x-1) > √(2x-4)
6) √(x+3) >= √(2x-8) + √(7-x)
7) √(x+2) - √(3-x) < √(5-2x)
8) √(x+1) > 3 - √(x+4)
9) √(5x-1) - √(4x-1)<= 3√x
10) { {√[2(x^2-16)]} / √(x-3) }+ √(x-3) > (7-x) / √(x-3)
Giúp mình 10 câu này với ạaa
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
3(2x^2+1)(2x^4+1)(2x^8+1)(2x^16+1)+1
Rút gọn
√(2x - 2√(2x - 1)) - 2√(2x + 3 - 4√(2x - 1)) + 3√(2x + 8 - 6√(2x - 1)) = 4
Vì: |2\(x\) - 1| = |1 - 2\(x\)|
Nên: |2\(x\) - 1| + |1 - 2\(x\)| = 8
⇒ |2\(x\) - 1| + |2\(x\) - 1| = 8
2.|2\(x\) - 1| = 8
|2\(x\) - 1| = 8:2
|2\(x\) - 1| = 4
\(\left[{}\begin{matrix}2x-1=-4\\2x-1=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-4+1\\2x=4+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-3\\2x=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\){- \(\dfrac{3}{2}\); \(\dfrac{5}{2}\)}
Giải phương trình
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)
\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)
\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{8}{4x^2-1}\)
\(\Leftrightarrow\frac{4x^2+4x+1-4x^2+4x-1-8}{4x^2-1}=0\)
\(\Leftrightarrow\frac{8x-8}{4x^2-1}=0\)
\(\Rightarrow8x-8=0\)
\(\Rightarrow x=1\)
tick mình nha!
\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{9}{4x^2-1}\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x+1=9\)
\(\Leftrightarrow8x=7\)
Vậy x=7/8
2x+2x+1+2x+2+...+2x+2020=2x+2024-8
Lời giải:
$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$
$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$
$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$
$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$
$\Rightarrow x=3$