Câu5
Thực hiện phép tính
( x phần x-1 -x^3 -2x^2 phân x^3 +1 ) : x+1 phần x +2x +1 phần x^3 +1
c5
thực hiện phép tính
(x phần x+1-x^3-2x^2 phần x^3+1 ) :x+1 phần x +2x+1 phần x^3 +1
Giúp mình nhé@@
Thực hiện phép tính:
A) (2x-3y)(4x^2+6xy+9y^2).
B) (6x^3+3x^2+4x+2):(3x^2+2)
C) (x+2)^2+(3-x)-2(x+3)(x-3)
D) x+3 phần x-2 - x-3 phần x+2 + x^2 +4x+8 phần 4-x^2
Phân tích đa thức sau thành nhân tử:
A) 6x(4-x)+x-4
B) x^2-1+x^2y-y
C) 25x^2-10x+1-16z^2
mình chỉ phân tích thôi
a) 6x(4-x)+x-4
=6x(4-x)-(4-x)
=(6x-1)(4-x)
c) 25x^2-10x+1-16z^2
=(5x-1)^2-16z^2
=(5x-1-4z)(5x-1+4z)
ban xem lại đề bài câu b đi chắc là sai đó
còn các câu trên bạn tự làm nhé
Thực hiện phép tính:
a) (2x-3y)(4x2+6xy+9y2)
=8x3-27y3
b) (6x3+3x2+4x+2):(3x2+2)
=(3x2+2)(2x+1):(3x2+2)
=2x+1
c) (x+2)2+(3-x)-2(x+3)(x-3)
=x2+4x+4+3-x-2x2+18
=-x2+4x+25
Giúp mình nhé@@
Thực hiện phép tính:
A) (2x-3y)(4x^2+6xy+9y^2).
B) (6x^3+3x^2+4x+2):(3x^2+2)
C) (x+2)^2+(3-x)-2(x+3)(x-3)
D) x+3 phần x-2 - x-3 phần x+2 + x^2 +4x+8 phần 4-x^2
Phân tích đa thức sau thành nhân tử:
A) 6x(4-x)+x-4
B) x^2-1+x^2y-y
C) 25x^2-10x+1-16z^2
Thực hiện phép tính:
A) (2x-3y)(4x^2+6xy+9y^2).
B) (6x^3+3x^2+4x+2):(3x^2+2)
C) (x+2)^2+(3-x)-2(x+3)(x-3)
D) x+3 phần x-2 - x-3 phần x+2 + x^2 +4x+8 phần 4-x^2
Phân tích đa thức sau thành nhân tử:
A) 6x(4-x)+x-4
B) x^2-1+x^2y-y
C) 25x^2-10x+1-16z^2
Bài 2:
a: 6x(4-x)+(x-4)
=6x(4-x)-(4-x)
=(4-x)(6x-1)
b: \(=x^2-1+y\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(1+y\right)=\left(y+1\right)\left(x+1\right)\left(x-1\right)\)
c: \(=\left(5x-1\right)^2-\left(4z\right)^2\)
=(5x-1-4z)(5x-1+4z)
Dạng 4 : Phân thức đại số các phép toán trên phân thức . Bài tập 1 Thực hiện phép tính a,. 2/2x + 3x-3/2x-1 + 2x^2+1/4x^2-2x b, 5/6x^2y +7/12xy^2 + 11/18xy c,. x^3+2x/x^3+1 + 2x/x^2-x+1 + 1/x+1
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
1. thực hiện phép tính sau:
c) 3x + 5 phần x^2 - 5x + 25 - x phần 25 - 5x
d) x^2 + x^4 + 1 phần 1 - x^2 + 1
e) 4x^2 - 3x + 17 phần x^3 - 1 + 2x - 1 phần x^2 + x + 1 + 6 phần 1 - x
c: \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)
\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{x^2-10x+25}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)
e: \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
\(=\dfrac{4x^2-3x+17+\left(2x-1\right)\left(x-1\right)-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-2x^2-9x+11+2x^2-3x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-12}{x^2+x+1}\)
V . CÁC PHÉP TOÁN VỀ PHÂN THỨC :
Bài 1 : Thực hiện các phép tính sau :
b) x+3/x-2+4+x/2-x
Bài 2 : Thức hiện các phép tính sau :
a) x+1/2x+6+2x+3/x2+3x
d) 3/2x2y +5/xy2 + x/y3
e) x/x-2y +x/x+2y + 4xy/4y2-x2
g) x+3/x+1 +2x-1/x-1 +x+5/X2-1 ;
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
5 phần 6=x-1 phần x
1 phần 2=x+1 phần 3x
3 phần x+2=5 phần 2x +1
5 phần 8x-2=-4 phần7-x
4 phần 3=2x-1 phần 3
2x-1 phần 3=3x+1 phần 4
4 phần x+2=7 phần 3x+1
-3 phần x+1=4 phần 2-2x
X+1 phần 3 =3 phần x+1
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
a, \(\frac{5}{6}=\frac{x-1}{x}\Leftrightarrow5x=6x-6\Leftrightarrow-x=-6\Leftrightarrow x=6\)
b, \(\frac{1}{2}=\frac{x+1}{3x}\Leftrightarrow3x=2x+2\Leftrightarrow x=2\)
c, \(\frac{3}{x+2}=\frac{5}{2x+1}\)ĐKXĐ : \(x\ne-2;-\frac{1}{2}\)
\(\Leftrightarrow6x+3=5x+10\Leftrightarrow x=7\)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2