Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Mai Ngọc Hà
Xem chi tiết
Akai Haruma
18 tháng 12 2023 lúc 19:03

Bài 1:

a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$

$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$

b.

$(x+1)(x+2)(x+3)(x+4)-24$

$=[(x+1)(x+4)][(x+2)(x+3)]-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=(a^2-4a)+(6a-24)$

$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

Akai Haruma
18 tháng 12 2023 lúc 19:06

Bài 2:

a. ĐKXĐ: $x\neq 3; 4$

\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)

b. $x^2+20=9x$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Rightarrow x=5$ (do $x\neq 4$)

Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$

Akai Haruma
18 tháng 12 2023 lúc 19:08

Bài 3:

$(2x^2-7x^2:13x:2):(2x-1)=(2x^2-\frac{7}{26}x):(2x-1)$

$=[x(2x-1)+\frac{19}{52}(2x-1)+\frac{19}{52}]:(2x-1)$

$=[(2x-1)(x+\frac{19}{52})+\frac{19}{52}]: (2x-1)$

$\Rightarrow$ thương là $x+\frac{19}{52}$ và thương là $\frac{19}{52}$

Phương Linh Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 22:05

\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)

Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2023 lúc 7:51

  loading...  

loading...  loading...  

Huỳnh Thị Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 8:41

Đề sai rồi bạn

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 7:35

\(A=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\\ A=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

\(B=\dfrac{7a-7b+8a+8b-16b}{\left(a+b\right)\left(a-b\right)}=\dfrac{15a-15b}{\left(a-b\right)\left(a+b\right)}\\ B=\dfrac{15\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}=\dfrac{15}{a+b}\)

nguyen ngoc son
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 18:26

Lời giải:
ĐK: $x\neq \pm 2; x\neq 0$

a) 

\(A=\left[\frac{x+2}{(x+2)(x-2)}+\frac{2x}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}\right].\frac{2-x}{x}=\frac{x+2+2x+x-2}{(x-2)(x+2)}.\frac{-(x-2)}{x}\)

\(=\frac{4x}{(x-2)(x+2)}.\frac{-(x-2)}{x}=\frac{-4}{x+2}\)

b) Để $A=1\Leftrightarrow \frac{-4}{x+2}=1$

$\Leftrightarrow x+2=-4$

$\Leftrightarrow x=-6$ (thỏa ĐKXĐ)

Vậy $x=-6$

nguyen ngoc son
Xem chi tiết