Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
1.Phân tích đa thức thành nhân tử
a.\(2x^3+3x^2-2x\) b.\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
2.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x-1}{x-3}\)
a.Rút gọn biểu thức A
b.tính giá trị của A biết \(x^2+20=9x\)
3.Tìm đa thức thương và đa thức dư trong phép chia:\(\left(2x^2-7x^2:13x:2\right):\left(2x-1\right)\)
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
Bài 3:
$(2x^2-7x^2:13x:2):(2x-1)=(2x^2-\frac{7}{26}x):(2x-1)$
$=[x(2x-1)+\frac{19}{52}(2x-1)+\frac{19}{52}]:(2x-1)$
$=[(2x-1)(x+\frac{19}{52})+\frac{19}{52}]: (2x-1)$
$\Rightarrow$ thương là $x+\frac{19}{52}$ và thương là $\frac{19}{52}$
cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)
1.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x+1}{x-3}\)
a.Rút gọn biểu thức A
b.Tính giá trị của A biết \(x^2+20=9x\)
2.Tìm đa thức thương vfa đa thức dư trong phép chia:\(\left(2x^3-7x^2+13x+2\right):\left(2x-1\right)\)
3.Cho hình thang ABCD có góc A = góc D = 90 độ,AB=AD=\(\dfrac{1}{2}\)CD.Gọi M là trung điểm của CD.
a.Tứ giác ABCM;ABCD là hình gì?Vì sao?
b.Cho AC cắt BD tại E, AM cắt BD tại O.Gọi N là trung điểm của MC.C/m tứ giác DOEN là hình thang cân.
c.Kẻ DI vuông góc vs AC (I thuộc AC) DI cắt AM tại H.Gọi K là giao điểm của AM và DE.C/m DH=DK
(vẽ hình giúp e vs ạ, e cảm ơn)
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên
rút gọn biểu thức sau :
a. \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
b. \(B=7:\left(a+b\right)+8:\left(a-b\right)-16b:\left(a^2-b^2\right)\)
\(A=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\\ A=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
\(B=\dfrac{7a-7b+8a+8b-16b}{\left(a+b\right)\left(a-b\right)}=\dfrac{15a-15b}{\left(a-b\right)\left(a+b\right)}\\ B=\dfrac{15\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}=\dfrac{15}{a+b}\)
cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1
Lời giải:
ĐK: $x\neq \pm 2; x\neq 0$
a)
\(A=\left[\frac{x+2}{(x+2)(x-2)}+\frac{2x}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}\right].\frac{2-x}{x}=\frac{x+2+2x+x-2}{(x-2)(x+2)}.\frac{-(x-2)}{x}\)
\(=\frac{4x}{(x-2)(x+2)}.\frac{-(x-2)}{x}=\frac{-4}{x+2}\)
b) Để $A=1\Leftrightarrow \frac{-4}{x+2}=1$
$\Leftrightarrow x+2=-4$
$\Leftrightarrow x=-6$ (thỏa ĐKXĐ)
Vậy $x=-6$
cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1