Tim x :
2014.\(\left|x-12\right|\)+(x-12)2=2013.\(\left|12-x\right|\)
\(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)
Ta có:
|12-x|=-|x-12|
Đ k: x-12>_0=>x>_12
=>2014.|x-12|+(x-12)^2=-2013.|x-12|
=>2014.(x-12)+(x-12)^2+2013.(x-12)=0
=>(x-12).(2014+x-12+2013)=0
=>(x-12).(x+2005)=0
=>x-12=0 và. x+2005=0
=>x=12 và x=-2005
Tìm x, biết 2014.|x - 12|+ \(\left(x-12\right)^2\)= 2013 . |12 - x|
a) tìm x biết:\(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)
b) tìm giá trị lớn nhất của biểu thức :\(A=\frac{3}{\left(x+2\right)^2+4}\)
Tìm x biết:
2014.|x-12|+\(^{\left(x-12\right)^2}\)= 2013.|12-x|
Ta có:
\(2014\left|x-12\right|+\left(x-12\right)^2=2013\left|12-x\right|\)
\(\Rightarrow\left(x-12\right)^2=2013\left|12-x\right|-2014\left|x-12\right|\)
\(\Rightarrow\left(x-12\right)^2=-\left|x-12\right|\)
\(\Rightarrow x-12=0\Rightarrow x=12\)
1 tim x \(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)\(x\)|
2 chung minh \(8^7-2^{18}⋮14\)
3 tim x,y,z biet 4x=7y=3z va x+y+z=61
4 tim a,b,c biet \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)vs \(a-b=15\)
giup mk nha moi nguoi,lm dc cang nhiu cang tot
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)
a,Tìm x biết: 2014.|x-12|+(x-12)^2=2013.|12-x|
b,Tìm giá trị lớn nhất của biểu thức:\(A=\frac{3}{\left(x+2\right)^2+4}\)
giải phương trình
a, \(\left(x^2+x+1\right).\left(x^2+x+2\right)=12\)
b,\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}=\dfrac{x+3}{2012}+\dfrac{x+4}{2011}\)
a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)
Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)
\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)
\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))
\(\Rightarrow x=-2015\)
a,tìm x biết :\(\dfrac{x+11}{12}+\dfrac{x+11}{13}+\dfrac{x+11}{14}=\dfrac{x+11}{15}+\dfrac{x+11}{16}\) . THay x tìm được để thu gọn giá trị biểu thức \(A=1+x+x^2+x^3+...+x^{100}\)
b, Tính giá trị nhỏ nhất của : \(B=\left|x-2014\right|+\left|x-2013\right|+\left|x-2012\right|+\left|x-2011\right|+\left|x-2010\right|+2014\)
a) Ta có:
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)
Mà ta có:
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Ta có:
\(A=1+x+x^2+x^3+...+x^{100}\)
Đặt \(B=x+x^2+x^3+...+x^{100}\)
\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)
\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)
\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)
\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)
\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)
Bài 1: Tính giá trị của biểu thức:
\(A=\left(x^{2013}+x^{2012}+.....+x^2+x+1\right)\) Tại x=2014
Bài 2: Tính giá trị của biểu thức : Tại \(x=\frac{3}{5};y=-0,2\)
\(B=\left(2^2+15^{12}+8^4+19^9\right)\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\)