Tìm x biết
a) \(3^{x-1}+7\cdot3^{x-1}=216\)
b) \(\left(x-2\right)^8=\left(x-2\right)^{10}\)
1 Tìm x,y
1) \(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
2 tìm giá trị nhỏ nhất hoac lớn nhat cua các biểu thức sau
A=\(\frac{x^2+5}{x^2+3}\)
3 chứng minh rằng: Với mọi số nguyên dương n thì :
\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
4 tính
\(\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+....+\frac{1}{44\cdot49}\right)\frac{1-3-5-7-...-49}{89}\)
A=\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5 Tìm x biết
a) \(_{\left(x-7\right)^{x+1}-\left(x-7\right)^{x-11}=0}\)
b) \(\frac{1}{8}\cdot16^x=2^x\)
Bài 1 : Thực hiện phép tính :
\(S=\dfrac{21^2\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3\cdot5^0\cdot14^3}\).
Bài 2 : Tìm x :
ɑ) \(2^{x-1}+5\cdot2^{x-2}=\dfrac{7}{32}\). b) \(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\).
Tìm x:
a)\(-4.\left[2.\left(x-4\right)-3.\left(5x-1\right)\right]+2x-8=12\)
b)3x.2x=216
c)27<813:3x<243
d)(x-7)x+1-(x-7)x+11=0
b)3x.2x=216
=>(3*2)x=216
=>6x=216
=>6x=63
=>x=3
a nhân loạn lên, c 813=(34)3=312:3x....
d)NHớm x-7x+1 vào
Tìm x biết: a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\) b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\) d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}.\dfrac{10}{6}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
Tìm x:
1) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
2) \(2\cdot3^x=10\cdot3^{12}+8\cdot27^4\)
3) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
1) ( 2x -15 )5 = ( 2x - 15 )3
( 2x -15 )5 - ( 2x - 15 )3 = 0
( 2x - 15 )3 . [ ( 2x - 15 )2 - 1 ] = 0
\(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\orbr{\begin{cases}2x-15=0\\2x-15=1\end{cases}}\)
\(\orbr{\begin{cases}2x=15\\2x=16\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{15}{2}\\x=8\end{cases}}\)
TÌM x BIẾT:
a,\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
với x\(\notin\){-2;-5;-10;-17}
b,\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
với x\(\notin\){1;3;8;20}
c, TÌM X BIẾT:
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
GIÚP MÌNH CHÚT NHA MÌNH CẦN NGAY. THANKS!
1. Tìm x
a) \(2^x+5=21\)
b) \(2^x-1+3^2=5^2+2\cdot5\)
c) \(\left(2x-1\right)^3+5=130\)
d) \(5^{2x-3}-2\cdot5^2=5^2\)
e) \(3^{2x+1}-2=3^2+\left[5^2-3\left(2^2-1\right)\right]\)
f) \(\left(7^x-11\right)^3=2^5\cdot5^2+200\)
g) \(2\cdot3^x=10\cdot3^{12}+8\cdot27^4\)
a) \(2^x+5=21\)
\(\Rightarrow2^x=21-5=16\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(2^x-1+3^2=5^2+2.5\)
\(\Rightarrow2^x-1+9=35\)
\(\Rightarrow2^x=35-9+1=27\)
Vậy x không có giá trị
c;d;e;f làm tương tự
Bài 1: Tính
a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)
b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)
c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)
Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)
b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\)
c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)
d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)
e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)
Bài 3: Chứng minh rằng
a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)
b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)
Bài 4:
a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)
b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)
c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Tìm x biết:
a)\(\frac{2}{3}.\left(x-\frac{3}{8}\right)-x-\left(-\frac{7}{8}+\frac{2}{3}\right)=\left(\frac{-3}{4}\right)^3:1\frac{11}{16}\)
b)\(-\frac{7}{8}+\frac{7}{8}:\left(\frac{2}{3}-x\right)+\frac{5}{6}:\left(-1\frac{11}{35}\right)=\left(0,8\right)^2\)