\(125-2^3:2^2+\left(5^2+8\right)\)
Tìm số tự nhiên x , biết
\(2\cdot\left(x-1\right)^2=8\)
\(\left(2x+1\right)^3=125\)
\(\left(x-2\right)^5=243\)
\(5\left(x-4\right)^2-7=13\)
\(221-\left(3x+2\right)^3=96\)
a,\((\frac{32}{81})^2.\left(\frac{-9}{8}\right)^5.\left(-4\right)^3̣\)
b,\(\left(-25\right)^5:125^2:\left(-5\right)^3\)
c,\(\left(\frac{8}{27}\right)^3:\left(\frac{-2}{3}\right)^8\)
\(\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) .Tính tổng
a) \(\frac{\left(-1\right)^3}{15}+\left(-\frac{2}{3}\right):2\frac{2}{3}-\left|-\frac{5}{6}\right|\)
b) \(1\frac{5}{13}-0,\left(3\right)-\left(1\frac{4}{9}+\frac{18}{13}-\frac{1}{3}\right)\)
c) \(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
d) \(\frac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
1) (-6 - 2) . (-6 + 2)
2) 627 + 125 + (-627) + |-46| -21
3) (-25) + 30 + (-16) + 25 + (-4)
4) 75 - 5.(15 - 40) - (-60)
5) |31 - 17| - |15 - 52|
6) 13 - 18 - (-42) - 15
7) 369.4.[(- 5) + 4. (-8) ]
8) \(\left(-8\right)^3\) : \(\left(-8\right)^2\) + 8
9) 72 : (-6 . 2 + 4)
1) (-6 - 2) . (-6 + 2) = -8 . (-4) = 32
2) 627 + 125 + (-627) + |-46| -21 = 125 + 46 - 21 = 150
3) (-25) + 30 + (-16) + 25 + (-4) = 30 + (-20) = 10
4) 75 - 5.(15 - 40) - (-60) = 75 - 75 + 80 + 60 = 140
5) |31 - 17| - |15 - 52| = |14| - |-37| = 14 - 37 = -23
6) 13 - 18 - (-42) - 15 = 13 - 18 + 42 - 15 = 22
3 bài sau hết kiên nhẫn rồi, thông cảm nhé.
7) 369.4.[(- 5) + 4. (-8) ]
= 1476 . [(-5) + (-32)]
= 1476 . -37
= -54612
8) (−8)3 : (−8)2 + 8
= 8 + 8
= 16
9) 72 : (-6 . 2 + 4)
= 72 : (-12 + 4)
= 72 : (-8)
= -9
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125};\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(x-\dfrac{2}{15}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}+\dfrac{2}{15}\)
\(x=\dfrac{8}{15}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\)
\(2x+5=4\)
\(2x=-1\)
\(x=-0,5\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\\ \Rightarrow\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow x-\dfrac{2}{15}=\dfrac{2}{5}\\ \Rightarrow x=\dfrac{2}{5}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{6}{15}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{8}{15}\\ \left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\\ \Rightarrow\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\\ \Rightarrow2x+5=4\\ \Rightarrow2x=4-5\\ \Rightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
\(TínhA=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(A=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\cdot9}\)
\(=\dfrac{1}{6}-\dfrac{5\cdot\left(-6\right)}{9}=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{21}{6}=\dfrac{7}{2}\)
\(B=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{56^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)