tìm m để 2 đường thẳng
y = 2x - 1 và y = (2m - 1)x + 3m
cắt nhau tại 1 điểm trên trục hoành
tìm m để 2 đường thẳng
y = 2x - 1 và y = (2m - 1)x + 3m
cắt nhau tại 1 điểm trên trục hoành
Thay y=0 vào y=2x-1, ta được:
2x-1=0
hay \(x=\dfrac{1}{2}\)
Thay \(x=\dfrac{1}{2}\) và y=0 vào (d), ta được:
\(\dfrac{1}{2}\left(2m-1\right)+3m=0\)
\(\Leftrightarrow4m=\dfrac{1}{2}\)
hay \(m=\dfrac{1}{8}\)
tìm m để 2 đường thẳng
y = 2x - 1 và y = (2m - 1)x + 3m
cắt nhau tại 1 điểm trên trục hoành
ĐKXĐ : \(m\ne\dfrac{1}{2}\)
Đặt : \(2x-1=\left(2m-1\right)x+3m\) (1)
Để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục hoành thì ta thay x=0 vào (1), được
\(-1=3m\) <=>\(m=\dfrac{-1}{3}\) (thỏa mãn )
Cách khác:
Thay x=0 vào y=2x-1, ta được:
2x-1=0
hay \(x=\dfrac{1}{2}\)
Thay \(x=\dfrac{1}{2}\) vào (d), ta được:
\(\left(2m-1\right)\cdot\dfrac{1}{2}+3m=0\)
\(\Leftrightarrow4m=1\)
hay \(m=\dfrac{1}{4}\)
Tìm m để đường thẳng y = (2m + 3)x + m - 1 và đường thẳng y = 2x + 3 cắt nhau tại 1 điểm trên trục hoành
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)
Định m để:
a) Hai đường thẳng (d): y=2x-1 +2m và (d'): y=-x-2m cắt nhau tại 1 điểm có hoành độ dương
b) Hai đường thẳng (D1): mx+y=2m và (D2): (2m+1)x+my=2m^2 + m -1 cắt nhau tại 1 điểm trên trục tung. Tìm điểm đó
1/.TÌm m để 2 đường thẳng \(y=2x-\left(2m-1\right)\)và \(y=3x+5m-4\)cắt nhau tại 1 điểm trên trục tung.
2/.TÌm m để 2 đường thẳng y=5x+1-2m và y=x-m-4 cắt nhau tại 1 điểm trên trục hoành.
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Tìm m để hai đường thẳng (d1): y = x - 2m + 1 và (d2): y = 2x – 3 cắt nhau tại một điểm nằm phía trên trục hoành
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
Tìm m để đường thẳng y=-3x+6 và đường thẳng y= 5/2 .x -2m+1 cắt nhau tại 1 điểm nằm trên trục hoành
tìm m để đường thẳng y=-3x+6 và y=5/2x-2m+1 cắt nhau tại một điểm trên trục hoành
Lời giải:
PT hoành độ giao điểm:
$-3x+6-(2,5x-2m+1)=0$
$\Leftrightarrow -5,5x+5+2m=0$
$\Leftrightarrow x=\frac{5+2m}{5,5}$
Tung độ giao điểm:
$y=-3x+6=\frac{-3(5+2m)}{5,5}+6$
Để 2 đths trên cắt nhau tại 1 điểm trên trục hoành thì $y=\frac{-3(5+2m)}{5,5}+6=0$
$\Leftrightarrow m=3$
cho đườn thẳng y=-3x+2 và đường thẳng y=\(\dfrac{3}{2}\)x+2m+1. Tìm m để hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành
+) Tìm giao điểm của đường thẳng \(y=-3x+2\) và trục hoành:
Phương trình hoành độ giao điểm: \(-3x+2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy đường thẳng \(y=-3x+2\) cắt trục hoành tại điểm \(A\left(\dfrac{2}{3};0\right)\)
+) Yêu cầu bài toán \(\Rightarrow A\left(\dfrac{2}{3};0\right)\in\left(d\right):y=\dfrac{3}{2}x+2m+1\)
Thay \(x=\dfrac{2}{3};y=0\) ta có: \(\dfrac{3}{2}.\dfrac{2}{3}+2m+1=0\Rightarrow2m+2=0\)
\(\Rightarrow2m=-2\Rightarrow m=-1\).