bài 1: cmr
a) 52005 + 52003 chia hết cho 13
b) a2 + b2 +1 \(\ge\) ab + a + b
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26
Mà 26 chia hết cho 13 => ...
2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b (*nhân cả hai vế với 2*)
<=> 2a2-2ab+2b2 +2 -2a -2b ≥0 (*chuyển vế phải sang vế trái và đổi dấu*)
<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0
<=> (a-b)2+(a-1)2+(b-1)2≥0
=> Bất đẳng thức đúng
=> đpcm
3) Ta có a+b+c=0
<=> a+b = -c
<=> (a+b)3=(-c)3
<=> a3+3a2b+3ab2+b3= -c3
<=> a3+b3+c3= -3a2b -3ab2 (*chuyển vế*)
<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)
Chứng minh rằng: 52005 + 52003 \(⋮\) 13.
\(5^{2005}+5^{2003}=5^{2003}.\left(5^2+1\right)=5^{2003}.26\)
Mà \(26⋮13\Rightarrow5^{2003}.26⋮13\)
Hay \(5^{2005}+5^{2003}⋮13\left(ĐPCM\right)\)
Chúc bn học tốt
cho a,b là các số nguyên dương
cmr ab(a2+2)(b2+2) luôn chia hết cho 9
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
cho các số nguyên a ; b thỏa mãn ( a2 + b2 ) chia hết cho 74.CMR a x b chia hết cho 74
CMR
a)(a-1).(a-2)+(a-3).(a+4)-(2a2+5a-34)=-7a+24
b) (a-b).(a2+ab+b2)-(a+b).(a2-ab-b2)=-2b3
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
Cho ba số a,b,c \(\ge-2\) thỏa mãn a2 + b2 +c2 + abc = 0. CMR a=b=c=0
- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)
- Nếu \(abc< 0\Rightarrow\) trong 3 số a; b; c có ít nhất 1 số âm
Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)
Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)
\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)
Vậy \(a=b=c=0\)
Cho a,b thuộc N* thỏa mãn (a,b)=1 . CMR (a2+b2;ab)=1
mình đang gấp giúp mình với
Lời giải:
Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$
$\Rightarrow a^2+b^2\vdots p; ab\vdots p$
Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$
Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$
$\Rightarrow b\vdots p$
$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý
Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$
Cho a,b,c>0 a2+b2+c2=3 Cmr: 1/(a+b) + 1/(b+c) + 1/(c+a) ≥ 4/(a2+7) + 4/(b2+7) + 4/(c2+7)
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)