cho đường tròn bán kính R dây AB lấy 2 điểm M,N sao cho AM=AN=NB CMR góc AOM=BON<MON
Cho đường tròn (O; R) đường kính AB. Trên các bán kính OA, OB lần lượt lấy các điểm M và N sao cho OM = ON. Qua M, N vẽ các dây cung CD, EF song song với nhau( C, E thuộc nửa đường tròn đường kính AB).
a) CMR: tứ giác CDFE là hình chữ nhật
b) Cho CM = 2/3 R, góc giữa CD và OA= 60 độ. Tính diện tích tứ giác CDFE
Cho đường tròn (o) bán kính R=12cm dây AB khác đường kính. qua O kẻ đường thẳng vuông góc vs AB cắt tiếp tuyến A của (O) tại M và cắt AB tại H a) Cho OM=15cm . Tính AM, AH và sin AOM b) chứng minh MB là tiếp tuyến của đường tròn
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho MAB =60 độ kẻ dây MN vuông góc AB tại N
1) chứng minh AM và AN là các tiếp tuyến của đương tròn B;BM
2) chứng minh MN^2=4AH.HB
1/
Xét (O) có
\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow AM\perp BM\) => AM là tiếp tuyến với (B) bán kính BM
Ta có
\(AB\perp MN\Rightarrow MH=NH\) (trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung tại điểm giao cắt)
=> AB vừa là đường cao vừa là đường trung tuyến của tg BMN
=> tg BMN cân tại B (Trong tg đường cao xp từ 1 đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân tại đỉnh đó)
=> BM=BN (cạnh bên tg cân) => \(N\in\left(B\right)\) => BN là đường kính của (B)
Xét (O) có
\(\widehat{ANB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AN\perp BN\)
=> AN là tiếp tuyến của (B)
2/
Ta có
\(MN=MH+NH\)
\(\Rightarrow MN^2=MH^2+NH^2+2.MH.NH\) (1)
Xét tg vuông AMB có
\(MH^2=AH.HB\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
\(\Rightarrow MH=\sqrt{AH.HB}\) (3)
Xét tg vuông ANB có
\(NH^2=AH.HB\) (lý do như trên) (4)
\(\Rightarrow NH=\sqrt{AH.HB}\) (5)
Từ (3) và (5) \(\Rightarrow MH.NH=\sqrt{AH.HB}.\sqrt{AH.HB}=AH.HB\) (6)
Thay (2) (4) (6) vào (1)
\(\Rightarrow MN^2=AH.HB+AH.HB+2.AH.HB=4.AH.HB\)
cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB. Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D. Vẽ AM,AN lâng lượt là dây cung của đường tròn B và C sao cho AM vuông góc với AN và D nằm giữa M;N.
a)CM: tam giác ABC=tam giác DBC
b)CM:ABDC là tứ giác nội tiếp
c)CM:Ba điểm M,D,N thẳng hàng
Cho đường tròn o bán kính r, 2 đường kính AB và CD vuông góc với nhau, trên tia AB lấy M sao cho AM=R\(\sqrt{2}\), vẽ dây CN đi qua M, từ N vẽ tiếp tuyến xy với đường tròn.
a)C/m xy song song AC
b) C/m tia CN là phân giác góc BCD
Thanks!
Cho đường tròn tâm O bán kính r dây AB=R căn 3 và K là điểm chính giữa cung lớn AB.Gọi M là điểm tùy ý trên cung nhỏ BK(M khác B;K).Trên tia AM lấy điểm N sao cho AN=BM.Kẻ BP//KM(P thuộc tâm O) a) Chứng minh ANKP là hình bình hành
BP//KM
=>PK=BM
=>PK=AN
mà PK//AN
nên ANKP là hình bình hành
Trên đường tròn (O;R) đường kính AB lấy điểm C sao cho AC=R.Điểm M thuộc cung nhỏ dây AM và BC cắt nhau tại .Tia AC cắt tia BM tại E. CMR tứ ECHM nội tiếp . CMR EH vuôn góc
goc ACB=góc AMB=1/2*180=90 độ
=>AM vuông góc BE, BC vuông góc AE
góc ECH+góc EMH=180 độ
=>ECHM nội tiếp
Xet ΔEAB có
AM,BC là đường cao
AM căt BC tại H
=>H là trực tâm
=>EH vuông góc AB
Cho nữa đường tròn (O;R) đường kính AB. Lấy điểm C là điểm chính giữa của cung AB, N là trung điểm của dây cung CB. Đường thẳng AN cắt nữa đường tròn (O) tại M. Từ C kẻ CI vuông góc với AM tại I.
a) Chứng minh tứ giác ACIO nội tiếp.
b) Chứng minh góc MOI = góc CAI.
c) Tính bán kính đường tròn ngoại tiếp tam giác IOM theo R.
cho đường tròn (O) tâm O, đường kính AB. lấy M là trung điểm của OB, vẽ đường (M) tâm M bán kính MB. gọi d là đường thẳng đi qua M và vuông góc với AB. trên (O) lấy điểm D sao cho dây BD cắt d tại N (D không trùng với A và N ). đường thẳng AN cắt (O) tại điểm thứ hai là C, đường thẳng OC cắt (M) tại điểm thứ hai là P a chứng minh tứ giác ADNM là tứ giác nội tiếp b chứng minh cung BC của (O) và cung BP của (M) có độ dài bằng nhau c chứng minh góc MCD = góc AOD