goc ACB=góc AMB=1/2*180=90 độ
=>AM vuông góc BE, BC vuông góc AE
góc ECH+góc EMH=180 độ
=>ECHM nội tiếp
Xet ΔEAB có
AM,BC là đường cao
AM căt BC tại H
=>H là trực tâm
=>EH vuông góc AB
goc ACB=góc AMB=1/2*180=90 độ
=>AM vuông góc BE, BC vuông góc AE
góc ECH+góc EMH=180 độ
=>ECHM nội tiếp
Xet ΔEAB có
AM,BC là đường cao
AM căt BC tại H
=>H là trực tâm
=>EH vuông góc AB
Trên đường tròn (O;R),đường kính AB lấy điểm C sao cho AC=R.Điểm M thuộc cung nhỏ BC;Dây AM và BC cắt nhau tại H.Tia AC cắt tia BM tại E.
a)Chứng minh tứ giác ECHM nội tiếp.
b)Chứng minh EH vuông góc với AB
Cho đường tròn (O) đường kính AB, dây CD vuông góc với AB tại E (E nằm giữa A và O,E khác A và O). Lấy điểm M thuộc cung nhỏ BC sao cho cun MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K.
a, Chứng minh tứ giác BMFE nội tiếp
b, Chứng minh BF vuông góc với AK và EK.EF=EA.EB
c, Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK=IF
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho đường tròn (O) đường kính AB=2R. Về bán kính OC vuông góc tại AB lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F a, CMR: BHEF nội tiếp b,CMR: BI.BF=BC.BE c, Tính S của tam giác FEC theo R khi H là trung điểm của OA d, Cho K di chuyển trên cung nhỏ AC. CMR: đương thẳng FH lươn đi qua 1 điểm cố định
Cho đường tròn(O,R) có đường kính AB và điểm C bất kì nằm trên nửa đường tròn, M là 1 điểm bất kì trên cung nhỏ CB. Chia đoạn thẳng AM và BC cắt nhau tại K, tia AC cắt tia BM tại D
a) chứng minh tứ giác DCKM nội tiếp rồi suy ra góc CDK= góc CMK
b) chứng minh góc CDK=1/2 góc ADC
C) giả sử AC = R, góc CAM= 45° tính độ dài CD Giải chi tiết hộ mình với ạ
cho đường tròn (O) đường kính AB và điểm C nằm trên (O) (C khác A,B). lấy D thuộc dây BC (D khác BC) .tia AD cắt cung nhỏ BC tại E, tia AC cắt BE tại F.
1cm tứ giác FCDE nội tiếp
2 cm DA .DE=DB.DC
3cm góc CFD và góc OCB
Trên đường tròn tâm O đường kính AB=2R , lấy điểm C sao cho sđ cung BC=60° . Hai tiếp tuyến với đường tròn vẽ từ B và C cắt nhau tại D . a) Tính sđ góc BOC và sđ cung nhỏ AC . b) chứng minh tứ giác OBDC nội tiếp . c) Tia AC cắt tia BD tại E . Chứng minh D là trung điểm của BE . d) Biết R=15cm . Tính diện tích hình quạt giới hạn bởi cung nhỏ AC( biết π=3,14)
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn ( O,R ) đường kính AB. Lấy điểm C thuộc đường tròn ( C khác A,B) . Lấy điểm D thuộc dây BC ( D khác B,C) . Tia AD cắt cung nhỏ BC tại điểm E. Tia AC cắt BE tại F. a,CM: Tứ giác FCDE nội tiếp b,CM:CF . CA = CB . CD c, Gọi I là tâm đường tròn ngoại tiếp của tứ giác FCDE. Cho AI cắt đường tròn (O) tại K .CMR: IC²=IK . IA