1:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét tứ giác FCDE có
\(\widehat{FCD}+\widehat{FED}=180^0\)
Do đó: FCDE là tứ giác nội tiếp
2: Xét ΔCDA vuông tại C và ΔEDB vuông tại E có
\(\widehat{CDA}=\widehat{EDB}\)
Do đó: ΔCDA\(\sim\)ΔEDB
Suy ra: DC/DE=DA/DB
hay \(DA\cdot DE=DB\cdot DC\)