1. Hỏi có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)\) chia hết cho 101?
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
Hỏi có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)\) chia hết cho 101?
có bao nhiêu số nguyên dương có 5 chữ số abcde thoả mãn abc-(10d+e) và chia hết cho 101
Xét các số dạng abc – (10d+e) sao cho thuộc tập {101,202,303,404,505,606,707,808,909}
Trường hợp 1 nếu d lấy từ 0 đên 8 thì với mỗi d ta chọn e lấy từ 0 đên 9 và ta có 0=<10d+e <=89
Khi đó luôn luôn tồn tại abc sao cho 909 >= abc - (10d+e) >=101
Vây mỗi d ta có 10 giá trị e và 9 giá trị abc thoả mãn vậy số có dạng thoả mãn là 9x10x9 = 810 số.
Trường hợp d=9.
Trường hợp e=0 ta có 9 số abc sao cho 909>=abc -90 >=101.
Trường hợp e=1 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 91 = 908 < 909.
Trường hợp e=2 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 92 = 907 < 909.
Trường hợp e=3 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 93 = 906 < 909.
Trường hợp e=4 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 94 = 905 < 909.
Trường hợp e=5 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 95 = 904 < 909.
Trường hợp e=6 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 96 = 903 < 909.
Trường hợp e=7 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 97 = 902 < 909.
Trường hợp e=8 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 98 = 901 < 909.
Trường hợp e=9 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 99 = 900 < 909.
Vậy số trường hợp là 9x8+9= 81 => Tống số trường hợp là 810+81= 891.
Có bao nhiêu số nguyên dương có 5 chữ số abcde sao cho abc-(10d+e) chia hết cho 101?
Ai giúp mình với
có bao nhiêu số tự nhiên có 5 chữ số abcde sao cho : abc - ( 10d+e ) chia hết cho 101
Lời gải:
Xét các số dạng abc – (10d+e) sao cho thuộc tập {101,202,303,404,505,606,707,808,909}
Trường hợp 1 nếu d lấy từ 0 đên 8 thì với mỗi d ta chọn e lấy từ 0 đên 9 và ta có 0=<10d+e <=89
Khi đó luôn luôn tồn tại abc sao cho 909 >= abc - (10d+e) >=101
Vây mỗi d ta có 10 giá trị e và 9 giá trị abc thoả mãn vậy số có dạng thoả mãn là 9x10x9 = 810 số.
Trường hợp d=9.
Trường hợp e=0 ta có 9 số abc sao cho 909>=abc -90 >=101.
Trường hợp e=1 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 91 = 908 < 909.
Trường hợp e=2 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 92 = 907 < 909.
Trường hợp e=3 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 93 = 906 < 909.
Trường hợp e=4 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 94 = 905 < 909.
Trường hợp e=5 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 95 = 904 < 909.
Trường hợp e=6 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 96 = 903 < 909.
Trường hợp e=7 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 97 = 902 < 909.
Trường hợp e=8 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 98 = 901 < 909.
Trường hợp e=9 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 99 = 900 < 909.
Vậy số trường hợp là 9x8+9= 81 => Tống số trường hợp là 810+81= 891.
Mình rất tiếc cho bạn Bexiu vì câu trả lời của bạn quá dài và phức tạp vì lúc mình ra đề toán mình đã biết câu trả lời nhưng vì đáo án bạn đúng nên mình sẽ k cho bạn, bạn cần cố gắng hơn, cảm ơn bạn
Có bao nhiêu số tự nhiên có 5 chư số abcde sao cho abc - (10d+e) chia hết cho 101
Cho số tự nhiên có 5 chữ số \(\overline{abcde}\)sao cho \(\overline{abcde}=\left(\overline{ab}\right)^3\)
a)CMR: \(20< \overline{ab}< 40\)
b) Tìm \(\overline{abcde}\)
Có bao nhiêu số tự nhiên có 5 chữ số khác nhau dạng \(\overline{abcde}\) sao cho b + d = 2c ?
2c luôn chẵn \(\Rightarrow b+d\) chẵn \(\Rightarrow b;d\) cùng tính chẵn lẻ
TH1: trong b,d có mặt chữ số 0 (nghĩa là 1 số chẵn) \(\Rightarrow\) chọn số còn lại trong cặp có 4 cách (2;4;6;8)
Hoán vị bd có 2 cách, với mỗi cặp b;d luôn có 1 giá trị c tương ứng
a có 7 cách chọn và e có 6 cách chọn
\(\Rightarrow4.2.7.6=336\) số
TH2: trong b;d không có mặt chữ số 0:
Chọn cặp bd có \(A_4^2+A_5^2=32\) cách (từ 2 tập 2;4;6;8 hoặc 1;3;5;7;9) cách
Với mỗi cặp b;d luôn có 1 giá trị c tương ứng
Chọn a có 6 cách, e có 6 cách
\(\Rightarrow32.6.6=1152\) số
Tổng cộng: \(336+1152=1488\) số
Có bao nhiêu số tự nhiên có 5 chữ số dạng \(\overline{abcde}\) và thỏa mãn a ≥ b ≥ c ≥ d ≥ e