Cho A=(3n+2015)(3n+2016) với n€N. Hãy chứng minh A chia hết cho 2.
Giúp mình với.
tìm n thuộc N biết:
n2 + 3n + 4 chia hết cho n + 3
2n + 9 chia hết cho n - 3
3n - 1 chia hết cho 3 - 2n
n x (n + 8) x (n + 13) chia hết cho 3 , n là số tự nhiên
các bạn giúp mình với ai làm giúp mình , mình sẽ tick cho ( tick 6 cái )
Bạn ơi, cái ý thứ 2 hình như đáp án là 6 thì phải, còn cách thình bày mình yếu lắm,đừng hỏi
cảm ơn bạn nhưng mình cần cách trình bày
Cho A= n^3+ 3n^2 + 2n
a) chứng minh rằng A chia hết cho 3 với mọi n nguyên
b) tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15
a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM
b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.
Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9
a) A = n3 +3n2 + 2n
A = n3 + n2 + 2n2 + 2n
A = n2.( n+1) + 2n.(n+1)
A = (n+1).(n2+2n)
A = (n+1).n.(n+2)
A = n.(n+1).(n+2)
Vì n.(n+1).(n+2) là tích 3 số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 3 với mọi n nguyên
b) Ta có: 15 = 3.5
Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5
Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5
Mặt khác n<10 nên n<n+1<n+2<12
Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11
Vậy các giá trị của n tìm được là: 3;4;5;8;9
chứng minh rằng: n.(n+8).(n+13) chia hết cho 3
GIÚP MÌNH VỚI CÁC BẠN !!!!!!!!!!!!!!!!!!!!!!!!!
tìm n thuộc N
3n chia hết (n-1)
\(3n:\left(n-1\right)\)
\(\Rightarrow3n-3+3:\left(n-1\right)\)
\(\Rightarrow3\left(n-1\right)+3:\left(n-1\right)\)
\(\Rightarrow3:\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{1;3\right\}\)
thế n-1 vô từng trường hợp các ước của 3 rồi tìm n nha
dấu : là chia hết nha
1/ so sánh 2*60 và 3*40
2/tìm ƯC của 2 số n+3 và 2n+5
3/A=5+5*2+5*3+5*4+...+5*99 chia hết cho 31
4/chứng tỏ (n+1) (n+2) (n+3) chia hết cho 6
5/ Chứng minh 3n+2 và 3n+3 (n\(\in\) n) là 2 số nguyên tố
6/tính tổng 2*1+2*2+2*3+...+2*100-2*101
7chung71 tỏ rằng số có dạng \(\frac{ }{abcabc}\) bao giờ chũng chia hết cho 11
8/Tìm số tự nhiên \(\frac{ }{abc}\) có 3 chữ số khác nhau , chia hết cho các số nguyên tố a,b,c.
Giúp mình với thứ 6 mình phải nộp rồi
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
7)Ta có:abcabc=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c
=11(9100a+910b+91c)\(⋮11\)
Vậy số có dạng abcabc luôn chia hết cho 11(đpcm)
Cho A =n\(^2\) + 3n + 1 với n là số tự nhiên . Chứng tỏ A không chia hết cho 2
Ta có
\(A=n^2+n+2n+1\)
\(A=n\left(n+1\right)+2n+1\)
ta thấy\(n\left(n+1\right)\) và \(2n\)đề chia hết cho 2 nên \(A=n\left(n+1\right)+2n+1\)ko chia hết cho 2
Vậy \(A=n^2+3n+1\) ko chia hết cho 2
Tính giá trị của biểu thức
A= xyz+xz-yz-z+xy+x-y-1 với x= -9; y =-21; z=-31
Chứng minh rằng
A) n3+3n2+2n chia hết cho 6 với mọi n là số nguyên
B) 49n+77n-29n-1 chia hết cho 48
C) 35x-14y+29-1 chia hết cho 7 với mọi x,y là số nguyên
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Giúp mình với! Mình đang cần gấp
Chứng minh
A= 2+2mũ 2+ ......+ 2mũ 60 chia hết cho 3, 7, 5
\(A=2+2^2+2^3+.........+2^{60}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+.......+2^{60}\right)\)
\(\Leftrightarrow2A=2^2+2^3+........+2^{60}+2^{61}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+......+2^{60}+2^{61}\right)-\left(2+2^2+2^3+........+2^{60}\right)\)
\(\Leftrightarrow1A=2^{61}-2\)
Mà 2^61 có tận cùng là chữ số 2 nên 2^61 - 2 sẽ có tận cùng là chữ số 0 chia hết cho 5
Vậy A chia hết cho 5
\(A=2+2^2+2^3+......+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{59}+2^{60}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+.......+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+.......+2^{59}.3\)
\(A=3.\left(2+2^3+....+2^{59}\right)\)
A chia hết cho 3
\(A=2+2^2+2^3+.......+2^{60}\)
\(A=\left(2+2^2+2^3\right)+.........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+......+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+....+2^{58}.7=7.\left(2+....+2^{58}\right)\)
A chia hết cho 7
Nhớ k cho mình nhé! Cảm ơn!!!
Các bạn ơi giúp mình với mình chưa hiểu rõ lắm bài này:
Dạng tổng quát số chia hết cho 2 là 2k,dạng tổng quát của số chia cho 2dư 1là2k+1v với k thuộc N. Hãy viết dạng tổng quát của số chia hết cho 3,số chia cho 3 dư 1,số chia cho 3 dư2
Tìm n thuộc N để
3n+7 chia hết cho n+4
GIÚP VỚI TỚ CẦN GẤP
3n + 7 : n + 4
= 3.1 + 7 : 1 + 4
= (3 + 7) : 5
= 10 : 5
= 2
= > n = 1