Bài 1: Cho x; y; z; t ∈ N*. Chứng minh rằng:
M= \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)
Có giá trị không phải là số tự nhiên.
Bài 2; Cho a ≠ b ≠ c ≠ 0 và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính giá trị của biểu thức: M=(1+\(\dfrac{a}{b}\))(1+\(\dfrac{b}{c}\))(1+\(\dfrac{c}{a}\))