Phân tích đa thức thành nhân tử
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
phân tích đa thức thành nhân tử \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
Phân tích đa thức thành nhân tử:
\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
phân tích đa thức thành nhân tử:
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
phân tích đa thức thành nhân tử:
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
Đặt y-z=-[(x-y)+(z-x)]
Thay vào rồi cm nha bạn
phân tích đa thức thành nhân tử:
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)
Phân tích đa thức sau thành nhân tử :
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x^{ }\right)^3\)
phân tích đa thức sau thành nhân tử:\(\left(x^3-y^3\right)^3+\left(y^3+z^3\right)^3-\left(z^3+x^3\right)^3\)
Phân tích đa thức thành nhân tử:
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
phân tích đa thức thành nhân tử :
a. \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b.\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(x+z\right)^3\)
a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)
\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)
b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)
\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)
\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)