Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Nguyễn Thùy Dương

Phân tích đa thức thành nhân tử

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

Song Thư
26 tháng 11 2017 lúc 20:54

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y=y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)\(=\left(x-z\right)\left[x^2-2xy+y^2-\left(xy-xz-y^2+yz\right)+y^2-2yz+z^2\right]-\left(x-z\right)^3\)\(=\left(x-z\right)\left(x^2+z^2-3xy-3yz+xz+3y^2\right)-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(x^2+z^2-3xy-3yz+xz+3y^2\right)-\left(x-z\right)^2\right]\)

\(=\left(x-z\right)\left(3y^2-3xy+3xz-3yz\right)\)

\(=3\left(y^2-xy+xz-yz\right)\left(x-z\right)\)


Các câu hỏi tương tự
Nguyễn Kim Anh
Xem chi tiết
nguyễn thu hằng
Xem chi tiết
Big City Boy
Xem chi tiết
Vy Oanh
Xem chi tiết
Măm Măm
Xem chi tiết
Măm Măm
Xem chi tiết
Măm Măm
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Măm Măm
Xem chi tiết