Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Hằng Trần
Xem chi tiết
Cô nàng Thiên Bình
20 tháng 3 2018 lúc 22:08

hình bạn tự vẽ nha

a)Xét tam giác BED và tam giác BEC có

BD=BC(giả thiết)

góc DBE= góc CBE(giả thiết)

cạnh BE chung

=>tam giác BED=tam giác BEC(c.g.c)(đpcm)

b)xét tam giác BKD và tam giác BKC có

BD=BC(giả thiết)

góc DBK= góc CBK(giả thiết)

Cạnh BK chung

=>tam giác BKD= tam giác BKC(c.g.c)

=>DK=CK(2 cạnh tương ứng)

Do đó tam giác CKD cân tại K

c)vì tam giác BED= tam giác BEC(theo phần a)

=>DE=CE(2 cạnh tương ứng)

Vì tam giác CKD cân tại K

=>góc KDE= góc KCE

xét tam giác KED và tam giác KEC có

KC=KD(theo phần b0

Góc KDE=góc KCE(chứng minh trên)

CE=DE(chứng minh trên)

=>tam giác KED = tam giác KEC (c.g.c)

góc KED=góc KEC(2 góc tương ứng)

mà 2 góc này kề bù

=>góc KED=góc KEC=180 độ : 2=90 độ

vì AH // BE

=>góc AHE= góc BEH

mà 2 góc này ở vị trí trong cùng phía

=>góc AHE+ góc BEH=180 độ

=>góc AHE= góc BEH=180 độ :2=90 độ

do đó AH vuông góc với DC

Kiên Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2021 lúc 21:26

a) Xét ΔBED và ΔBEC có 

BD=BC(gt)

\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))

BE chung

Do đó: ΔBED=ΔBEC(c-g-c)

Xét ΔBDI và ΔBCI có

BD=BC(gt)

\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))

BI chung

Do đó: ΔBDI=ΔBCI(c-g-c)

⇒ID=IC(hai cạnh tương ứng)

b) Sửa đề: Chứng minh AH//BI

Xét ΔBDC có BD=BC(gt)

nên ΔBDC cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBDC cân tại B(cmt)

mà BI là đường phân giác ứng với cạnh đáy DC(gt)

nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)

⇒BI⊥DC

Ta có: AH⊥DC(gt)

BI⊥DC(cmt)

Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)

lilith.
Xem chi tiết

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao
BH là đường phân giác

Do đó: ΔBFC cân tại B

c: Ta có: ΔBFC cân tại B

=>BF=BC

Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung

BF=BC

Do đó: ΔBDF=ΔBAC

=>\(\widehat{BDF}=\widehat{BAC}=90^0\)

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

mà \(\widehat{BAE}=90^0\)

nên \(\widehat{BDE}=90^0\)

mà \(\widehat{BDF}=90^0\)

và DE,DF có điểm chung là D

nên D,E,F thẳng hàng

Thu Hà
Xem chi tiết
Nguyễn Đức Phúc
Xem chi tiết
Ling bbi ~~
Xem chi tiết
Hung Nguyên kim
7 tháng 12 2021 lúc 20:12

undefined  undefined

Lưu Khánh Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 13:38

a: Xét ΔBEA và ΔBED có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBEA=ΔBED

nguyenduckhai /lop85
3 tháng 12 2021 lúc 13:40

Kim TaeHyung
Xem chi tiết
IIoOoTÔioOoVẫNIIOlÀlloOo...
22 tháng 1 2016 lúc 18:31

TaeHyung toàn gửi những bài khó không nhỉ! ^.^

ngoc anh nguyễn
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 1 2022 lúc 11:27

a) Xét tam giác ABD và tam giác EBD:

+ AB = EB (gt).

+ BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).

\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).

b) Tam giác ABD = Tam giác EBD (cmt).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\) \(\widehat{BED}=90^o\)

c) Xét tam giác ABE: BA = BE (gt).

\(\Rightarrow\) Tam giác ABE cân tại B.

Mà BD là phân giác (gt).

\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).

\(\Rightarrow\) \(BD\perp AE.\)