a) Xét ΔBED và ΔBEC có
BD=BC(gt)
\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))
BE chung
Do đó: ΔBED=ΔBEC(c-g-c)
Xét ΔBDI và ΔBCI có
BD=BC(gt)
\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))
BI chung
Do đó: ΔBDI=ΔBCI(c-g-c)
⇒ID=IC(hai cạnh tương ứng)
b) Sửa đề: Chứng minh AH//BI
Xét ΔBDC có BD=BC(gt)
nên ΔBDC cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBDC cân tại B(cmt)
mà BI là đường phân giác ứng với cạnh đáy DC(gt)
nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)
⇒BI⊥DC
Ta có: AH⊥DC(gt)
BI⊥DC(cmt)
Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)