xét ΔADM và ΔADN có:
AD chung
MAD=NAD(góc)
AMD=AND=90(góc)
⇒ΔADM=ΔADN(cạnh huyền--góc nhọn)
xét ΔADM và ΔADN có:
AD chung
MAD=NAD(góc)
AMD=AND=90(góc)
⇒ΔADM=ΔADN(cạnh huyền--góc nhọn)
Bài 1 Cho tam giác ABC vuông ở A,có AB=6cm;AC=8cm,phân giác BD(D thuộc AC).Kẻ DE vông góc với BC(E thuộc BC).Gọi F là giao điểm của BA và ED.
a) Tính độ dài cạnh bC?b) Chứng Minh: tam giác BAD= tam giác BEDc) Chứng Minh tam giác DFC cân tại D
Bài 3: Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB (E ϵ AB) và DF AC (F ϵ AC). Chứng minh rằng:
a) DE = DF.
b) △ BDE = △ CDF.
c) AD là đường trung trực của BC.
cho tam giác ABC biết AB<BC Trên tia BA lấy Điểm D sao cho BC =BD Tia phân giác của góc B cắt cạnh AC và CD theo thứ tự ở E và I
a)C/M tam giác BED = tam giác BEC và chứng minh IC=ID
b)Từ A vẽ đường vuông góc AH với DC (H thuộc DC). Chứng minh AD//BI
giúp mình đi ngày kia mình kiểm ta rồi
Bài 5. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng
a) AH = AK
b) BH = CK
c) AK = \(\dfrac{AC+AB}{2}\) , CK = \(\dfrac{AC-AB}{2}\)
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
cho tam giác abc vuông tại a,kẻ ah vuông góc với bc tại h.trên tia đối của tia ha lấy điểm m sao cho hm = ha a,chứng minh tam giác ahc = tam giác mhc và ch là tia phân giác của góc acm b,kẻ đường thẳng mx song song với ac cắt đường thẳng bc tại d.chứng minh tam giác ahc = tam giác hmd và am là đường trung trực của dc c,gọi e,f lần lượt là trung điểm của ac,dm.chứng minh h là trung điểm của ef
Bài 4: Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M, N cắt nhau ở O. AO cắt BC tại H. Chứng minh HB=HC và AH vuông góc với BC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK