Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thùy Linh
Xem chi tiết
Thùy Linh
5 tháng 10 2021 lúc 20:54

giúp mình đi mình đang cần gấp

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:02

Câu 1: C

Câu 2: C

 

tuan anh
Xem chi tiết
Big City Boy
Xem chi tiết
Cô gái của tương lai
Xem chi tiết
Lê Minh Đức
Xem chi tiết
kakaruto ff
Xem chi tiết
Tô Mì
1 tháng 9 2023 lúc 9:27

Phương trình tương đương: \(5a-2a\sqrt{5}+b\sqrt{5}-2b=1\)

\(\Rightarrow\sqrt{5}\left(b-2a\right)+\left(5a-2b-1\right)=0\).

\(\Leftrightarrow\left\{{}\begin{matrix}b-2a=0\\5a-2b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) (thỏa mãn).

Vậy: \(\left(a;b\right)=\left(1;2\right)\)

Gia An Ho
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 11:20

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

8B.18. Khải Hưng
Xem chi tiết
Akai Haruma
20 tháng 3 2022 lúc 17:08

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

Lưu Đức Trọng
Xem chi tiết