(2x+1)+(2x+2)+(2x+3)+...+(2x+101)=5757
tim so x
TÌM x
[2x+1]+[2x+2]+[2x+3]+......+[2x+101]=5757
\(\Leftrightarrow2x+1+2x+2+2x+3+....+2x+101=5757\)
\(\Leftrightarrow2x.101+\left[1+2+3+....+101\right]=5757\)
\(\Leftrightarrow202x+\frac{\left[101+1\right]101}{2}=5757\)
\(\Leftrightarrow202x+5151=5757\)
\(\Leftrightarrow202x=606\)
\(\Leftrightarrow x=3\)
Vậy x=3
Giải các bất phương trình sau:
a) \(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
b) \(\dfrac{3-x}{100}+\dfrac{4-x}{101}>\dfrac{10-2x}{204}+\dfrac{12-2x}{206}\)
a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)
=>2x-2018<0
=>x<2019
b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)
=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)
=>\(x+97< 0\)
=>x<-97
1Tìm x
a.23x+1=128
b.(7x-11)3=25+52+200
c.(2x+1)+(2x+2)+(2x+3)+...+(2x+101)=5757
a.23x+1=128
=> 23x + 1 = 27
=> 3x + 1 = 7
=> 3x = 6
=> x = 2
vay_
a.23x +1=128
= 23x x 2=128
=128:2=64=2 mũ 6
vậy x=2
b.(7x-11)3=25+52+200
(7x-11)3=257=6,3579 mũ 3
7x=17,3579
x=2,4797
c.(2x+1)+(2x+2)+(2x+3)+...+(2x+101)=5757
vế trái có 101 số hạng
VT =(2x +1+2x+101).101:2=(4x+102).101:2=5757
(4x+102).101 =5757.2=11514
(4x+102)=11514:101=114
4x=114-102=12
x=12:4=3
vậy x=3
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
Cho hàm số y=f(x)= -2x101 + 2x100 + 2x99 +...+ 2x2 + 2x - 98. Tính giá trị của hàm số tại x= -1
f(x) = -2x101 + 2x99(x+1) + 2x97(x+1) +.......+2x(x+1) -98
=- 2x101 + (x+1)(2x99+2x97 +.......+2x) - 98
f(-1) = -2(-1) + 0 -98
= 2-98 = - 96
\(\dfrac{2x-1}{203}\)+\(\dfrac{2x-3}{205}\)=\(\dfrac{5-2x}{207}\)-\(\dfrac{2x}{101}\)
Lời giải:
PT $\Leftrightarrow \frac{2x-1}{203}+1)+(\frac{2x-3}{205}+1)=(\frac{5-2x}{207}-1)-(\frac{2x}{101}+2)+5$
$\Leftrightarrow \frac{2x+202}{203}+\frac{2x+202}{205}=\frac{-(2x+202)}{207}-\frac{2x+202}{101}+5$
$\Leftrightarrow (2x+202)(\frac{1}{203}+\frac{1}{205}+\frac{1}{207}+\frac{1}{101})=5$
$\Leftrightarrow x=\frac{1}{2}[5: (\frac{1}{203}+\frac{1}{205}+\frac{1}{207}+\frac{1}{101})-202]$
\(\dfrac{2x-1}{203}\)+\(\dfrac{2x-3}{205}\)=\(\dfrac{5-2x}{207}\)-\(\dfrac{2x}{101}\)
Lời giải:
PT $\Leftrightarrow \frac{2x-1}{203}+1)+(\frac{2x-3}{205}+1)=(\frac{5-2x}{207}-1)-(\frac{2x}{101}+2)+5$
$\Leftrightarrow \frac{2x+202}{203}+\frac{2x+202}{205}=\frac{-(2x+202)}{207}-\frac{2x+202}{101}+5$
$\Leftrightarrow (2x+202)(\frac{1}{203}+\frac{1}{205}+\frac{1}{207}+\frac{1}{101})=5$
$\Leftrightarrow x=\frac{1}{2}[5: (\frac{1}{203}+\frac{1}{205}+\frac{1}{207}+\frac{1}{101})-202]$
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)