Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên Thị Mỹ Tâm
Xem chi tiết
alibaba nguyễn
28 tháng 2 2017 lúc 10:37

Đặt \(\sqrt[3]{3x^2-x+2001}=a;-\sqrt[3]{3x^2-7x+2002}=b;-\sqrt[3]{6x-2003}=c\)

Thì ta có được hệ: \(\hept{\begin{cases}a+b+c=\sqrt[3]{2002}\\a^3+b^3+c^3=2002\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Với  a = - b thì

\(\sqrt[3]{3x^2-x+2001}=\sqrt[3]{3x^2-7x+2002}\)

\(\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x=1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Tương tự cho 2 trường hợp còn lại 

tuan va manh
28 tháng 2 2017 lúc 11:11

\(\Leftrightarrow\)x=\(\frac{1}{6}\)

mặt trời xanh
28 tháng 2 2017 lúc 20:57

giải giúp mk bài này hoặc đăng hộ mk vs các pạn. mk đăng lên, ấn tải thế là nó hiện cái câu hỏi tương tự rôi cứ ấn như thế mãi ko đk

Gọi O là giao điểm của hai đường chéo AC, BD của hình thang ABCD với đáy lớn là CD. Các đường thẳng kẻ từ A, B song song với AC, BD cắt các đường chéo AC, BD tại E, F.

a) Chứng minh tứ giác ABFE là hình thang.

b) Chứng minh AB2=ÈF.CD

c) S1,S2,S3,S4 là diện h các tam giác OAB, OCD, OAD VÀ OBC. Chứng minh S1.S2=S3.S4

d) đường thẳng qua O song song với AB cắt AD, BC tại M,N. Chứng minh 1/AB+1/CD=2/MN

giang ho dai ca
Xem chi tiết
Trần Tuyết Như
22 tháng 5 2015 lúc 21:24

mình giải bằng casio ra x = 0,767591877

Lê Hải Anh
13 tháng 12 2018 lúc 20:53

sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?

sao vậy bạn

k mk nha

tth_new
16 tháng 6 2019 lúc 9:07

Em thử ạ!

Đặt \(\sqrt[3]{3x^2-x+2011}=a;\sqrt[3]{3x^3-7x+2002}=b;\sqrt[3]{6x-2003}=c\)

Thì được: \(a^3-b^3-c^3=2002\) (1)

Mặt khác theo đề bài \(\left(a-b-c\right)^3=2002\) (2)

Từ (1) và (2) ta được: \(a^3-b^3-c^3-\left(a-b-c\right)^3=0\)

\(\Leftrightarrow3\left(b-a\right)\left(c-a\right)\left(c+b\right)=0\)

\(\Leftrightarrow a=b\text{ hoặc: }c=a\text{ hoặc }c+b=0\)

+) Với a=  b thì \(a^3=b^3\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x-1=0\Leftrightarrow x=\frac{1}{6}\)

... Anh làm tiếp thử ạ.

M Trangminsu
Xem chi tiết
TFBoys
11 tháng 7 2018 lúc 9:46

Dùng hđt \(\sqrt[3]{a}-\sqrt[3]{b}=\dfrac{a-b}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)\(\sqrt[3]{a}+\sqrt[3]{b}=\dfrac{a+b}{\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}}\)

Ta có:

\(\sqrt[3]{3x^2-x+2001}-\sqrt[3]{3x^2-7x+2002}=\sqrt[3]{6x+2003}+\sqrt[3]{2002}=0\)

\(\Leftrightarrow\dfrac{6x-1}{\sqrt[3]{\left(3x^2-x+2001\right)^2}+\sqrt[3]{\left(3x^2-x+2001\right)\left(3x^2-7x+2002\right)}+\sqrt[3]{\left(3x^2-7x+2002\right)^2}}=\dfrac{6x-1}{\sqrt[3]{\left(6x+2003\right)^2}-\sqrt[3]{2002.\left(6x+2003\right)}+\sqrt[3]{2002^2}}\)

\(\Leftrightarrow x=\dfrac{1}{6}\)

Thuận Phạm
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
QUan
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 21:26

Xét với n là số tự nhiên không nhỏ hơn 1

Ta có : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng điều trên ta có 

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)

\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

\(=1-\frac{1}{\sqrt{2002}}< 1-\frac{1}{\sqrt{2025}}=1-\frac{1}{45}=\frac{44}{45}\)

kagamine rin len
1 tháng 10 2016 lúc 21:41

ta chứng minh công thức tổng quát sau 

\(\frac{1}{\left[n+1\right]\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left[n+1\right]}\left[\sqrt{n+1}+\sqrt{n}\right]}\)

=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}\left[n+1-n\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}}\)

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

ta có \(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

........ 

\(\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}=\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

=> \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+..+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)

=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

=\(1-\frac{1}{\sqrt{2002}}< \frac{44}{45}\)

Nguyễn Minh Tuấn
Xem chi tiết
alibaba nguyễn
28 tháng 7 2017 lúc 14:09

\(x^4+\sqrt{x^2+2002}=2002\)

Đặt \(\sqrt{x^2+2002}=a^2>0\)

\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(x^4-a^4+x^2+a^2=0\)

\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)

\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)

\(\Leftrightarrow x^4+x^2-2001=0\)

Tới đây thì đơn giản rồi

alibaba nguyễn
28 tháng 7 2017 lúc 14:15

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)

lê duy mạnh
Xem chi tiết
lê duy mạnh
26 tháng 7 2019 lúc 16:30

MN ƠI GIÚP EM

lê duy mạnh
26 tháng 7 2019 lúc 16:41

mn giúp e

Trương Tuệ Nga
Xem chi tiết