3x2+12x+3= ( phân tích thành nhân tử )
tìm GTLN hoặc GTNN: 5-8x-x2
1. Phân tích thành nhân tử
a) x2 + 7x + 10; b) x2 – 21x + 110; c) 3x2 + 12x + 9; d) 2ax2 - 16ax + 30a.
2. Phân tích thành nhân tử
a) x2 + x – 6; b) x2 – 2x – 15; c) 4x2 - 12x - 160; d) 5x2y - 10xy - 15y.
3. Phân tích thành nhân tử
a) x2 – xy – 20y2 ; b) 3x4 + 6x2y2 – 45y4 ; c) 2bx2 – 4bxy - 70y2
4. Giải phương trình
a) x2 + x = 72; b) 3x2 – 6x = 24 c) 5x3 – 10x2 = 120x.
5. Phân tích thành nhân tử
a) 3x2 -11x + 6; b) 8x2 + 10x – 3 ; c) 8x2 -2x -1 .
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
tìm GTNN hoặc GTLN của A = 3x2+2x-3
B = (x2+x+20): x2 +x +5
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
Phân tích đa thức thành nhân tử
a/ 3x2 – 30x +75
b/ x2 +xy +8x +8y
c/ x2 +4x +4 - y2
a) \(=3\left(x^2-10x+25\right)=3\left(x-5\right)^2\)
b) \(=x\left(x+y\right)+8\left(x+y\right)=\left(x+y\right)\left(x+8\right)\)
c) \(=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
a) =3(x2−10x+25)=3(x−5)2
b) =x(x+y)+8(x+y)=(x+y)(x+8)
c) =(x+2)2−y2=(x+2−y)(x+2+y)
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et: 
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
= 
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm 
Vậy: 
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:

Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
3x2 + 8x + 2
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:

Câu 6:Thực hiện phép nhân -2x(x2 + 3x - 4) ta được:
A.-2x3 - 6x2 – 8x B. 2x3 -6x2 – 8x C. -2x3 - 6x2 + 8x D. -2x3 + 3x2 -4
Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:
A. (x+y+3z)(x+y–3z)
B. (x-y+3z)(x+y–3z)
C.(x - y +3z)(x - y – 3z)
D. (x + y +3z)(x -y – 3z)
Câu 8: Phân tích đa thức 27x3 –
thành nhân tử ta được:
A.(3x+
)(9x2-x+
)
B.(3x–
)(9x2+x+
)
C.(27x–
)(9x2+x+
)
D.(27x+
)(9x2+x+
)
Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:
A. (x - 3)( x + 4 ) B. (x + 3)( x + 4 ) C.(x + 5)( x + 2 ) D. (x -5)( x + 2 )
Câu 10: Giá trị của biểu thức (x2 + 4x + 4) tại x = - 2 là:
A. 4 B. -2 C. 0 D. -8
Câu 6:Thực hiện phép nhân -2x(x2 + 3x - 4) ta được:
A.-2x3 - 6x2 – 8x B. 2x3 -6x2 – 8x C. -2x3 - 6x2 + 8x D. -2x3 + 3x2 -4
Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:
A. (x+y+3z)(x+y–3z)
B. (x-y+3z)(x+y–3z)
C.(x - y +3z)(x - y – 3z)
D. (x + y +3z)(x -y – 3z)
Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:
A. (x - 3)( x + 4 ) B. (x + 3)( x + 4 ) C.(x + 5)( x + 2 ) D. (x -5)( x + 2 )
Câu 10: Giá trị của biểu thức (x2 + 4x + 4) tại x = - 2 là:
A. 4 B. -2 C. 0 D. -8
Mấy câu còn lại bị lỗi r nhé
phân tích các đa thức sau thành nhân tử
a, 3x2 - 6
b, x2 - 2x +1 - y2
c, 9x3 - 9x2y - 4x + 4y
d, x3 - 2x2 - 8x
giúp emm
\(a,=3\left(x^2-2\right)\\ b,=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\\ c,=9x^2\left(x-y\right)-4\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\\ d,=x\left(x^2-2x-8\right)=x\left(x^2+2x-4x-8\right)=x\left(x+2\right)\left(x-4\right)\)
Phân tích thành nhân tử
`2x-1^3 +8`
`8x^3 -12x^2 +6x-1`
`8x^3 -12x^2 +6x-2`
`9x^3 -12x^2 +6x-1`
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
8x³ - 12x² + 6x - 1
= (2x)³ - 3.(2x)².1 + 3.2x.1 - 1³
= (2x - 1)³
--------------------
8x³ - 12x² + 6x - 2
= 8x³ - 12x² + 6x - 1 - 1
= (2x)³ - 3.(2x)².1 + 3.(2x).1 - 1³ - 1³
= (2x - 1)³ - 1³
= (2x - 1 - 1)[(2x - 1)² + (2x - 1).1 + 1]
= (2x - 2)(4x² - 4x + 1 + 2x - 1 + 1)
= 2(x - 1)(4x² - 2x + 1)
--------------------
9x³ - 12x² + 6x - 1
= x³ + 8x³ - 12x² + 6x - 1
= x³ + (2x)³ - 3.(2x)² + 3.2x.1² - 1³
= x³ + (2x - 1)³
= (x + 2x - 1)[x² - x.(2x - 1) + (2x - 1)²]
= (3x - 1)(x² - 2x² + x + 4x² - 4x + 1)
= (3x - 1)(3x² - 3x + 1)
phân tích đa thức thành nhân tử và tìm x
`a, 8x (x-3)+x-3=0`
`b, x^2+36=12x`
a) \(8x\left(x-3\right)+x-3=0\)
\(\Rightarrow8x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{8}\end{matrix}\right.\)
b) \(x^2+36=12x\)
\(\Rightarrow x^2-12x+36=0\)
\(\Rightarrow\left(x-6\right)^2=0\)
\(\Rightarrow x=6\)